Featured Research

from universities, journals, and other organizations

Chiral metal surfaces may help to manufacture pharmaceuticals; Novel approach could be used in pharmaceutical drug synthesis

Date:
October 26, 2011
Source:
University of Cambridge
Summary:
New research shows how metal surfaces that lack mirror symmetry could provide a novel approach towards manufacturing pharmaceuticals.

New research shows how metal surfaces that lack mirror symmetry could provide a novel approach towards manufacturing pharmaceuticals.

Related Articles


These 'intrinsically chiral' metal surfaces offer potential new ways to control chiral chemistry, pointing to the intriguing possibility of using heterogeneous catalysis in drug synthesis. Such surfaces could also become the basis of new biosensor technologies.

A chiral object, such as your hand, is one that cannot be superposed on its mirror image. Chirality is fundamental in biochemistry. The building blocks of life -- amino acids and sugars -- are chiral molecules: their molecular structures can exist in either "left-handed" or "right-handed" forms (or "enantiomers").

A living organism may respond differently to the two enantiomers of a chiral substance. This is crucially important in the case of pharmaceutical drugs, where the therapeutic effect is often tied strongly to just one enantiomer of the drug molecule. Controlling chirality is therefore vital in pharmaceutical synthesis.

Research into controlling chiral synthesis focuses mainly on using homogeneous catalysts, where the catalyst is in the same phase as the reactants and products, such as a liquid added to a liquid-phase reaction. However, this poses significant practical challenges in recovering the valuable catalyst material from the mixture. To avoid this problem, an attractive alternative would be heterogeneous catalysis over a solid surface -- the type of catalysis used in catalytic converters in car exhaust systems, as well as in industrial Haber-Bosch synthesis of ammonia and Fischer-Tropsch synthesis of synthetic fuel, for example. The question then is how to achieve enantiomer-specific effects at a surface.

To help answer this question, scientists at the University of Cambridge have been probing the spontaneous self-organization of a simple chiral amino acid, alanine, into regular molecular arrays on copper single-crystal surfaces. Thanks to a powerful scanning tunnelling microscope, capable of resolving individual atoms and molecules, their work is revealing the various manifestations of chirality that occur, giving important clues to how they arise, and how they might be controlled and exploited.

Dr Stephen Driver, of the Department of Chemistry at the University of Cambridge, who led the experimental work, said: "We set out to investigate two distinct scenarios. In one scenario, the surface is non-chiral, so any chirality that we see can only arise from the chirality of the alanine molecule. In the other scenario, we move to a surface that is intrinsically chiral. Now the question becomes: do the two enantiomers of alanine behave differently on this chiral surface?"

On the non-chiral surface, the researchers found that alanine can self-organise into either of two patterns. In one of these, the self-organisation is driven by hydrogen bonding between the molecules, while the chiral centre has no discernable impact on the regular array. In the other structure, a network of long-range chiral boundaries punctuates the array, and the boundary chirality switches with molecular chirality.

Driver explained: "The implication is that the chiral centre is having a direct influence on the packing of two alanine neighbours at the boundary, and that the chirality of this pair propagates to the next pair and the next and so on, so that the chiral boundary is built up over a long range."

The chiral surface is created simply by choosing a surface orientation that lies away from any of the bulk mirror symmetry planes of the metal crystal. When the researchers added alanine, they found that the surface changes its local orientation, forming nanometre-scale facets. The two enantiomers of alanine self-organise into different chiral patterns: a strong, enantiomer-specific structural effect. This "proof of principle" could potentially be exploited in chiral recognition, in chiral synthesis (forming a chiral product from non-chiral reactants), and in chiral separations.

Driver added: "It looks like alanine can shape a comfortable, chiral bonding site for itself. The copper surface has the flexibility to adapt itself to the shape of the alanine molecule, and this shape is different for the two different molecular enantiomers."

The results imply that certain surface orientations will form stable, ordered structures with one molecular enantiomer but not the other: exactly the right conditions to promote chiral chemical effects.

Professor Sir David King, former Chief Scientific Advisor to the UK Government and current Director of the Smith School of Enterprise and the Environment at Oxford, brought together the team carrying out this research. "These results are very exciting," said King. "Tailoring the right surface to the right molecule should lead to strong enantiospecific effects. We see a real basis here for a breakthrough technology in the pharmaceuticals sector. It's something that pharma companies should be taking a close interest in."

The Cambridge team's findings are published in Topics in Catalysis.


Story Source:

The above story is based on materials provided by University of Cambridge. The original story is licensed under a Creative Commons license. Note: Materials may be edited for content and length.


Journal Reference:

  1. Marian L. Clegg, Leonardo Morales de la Garza, Sofia Karakatsani, David A. King, Stephen M. Driver. Chirality in Amino Acid Overlayers on Cu Surfaces. Topics in Catalysis, 2011; DOI: 10.1007/s11244-011-9758-y

Cite This Page:

University of Cambridge. "Chiral metal surfaces may help to manufacture pharmaceuticals; Novel approach could be used in pharmaceutical drug synthesis." ScienceDaily. ScienceDaily, 26 October 2011. <www.sciencedaily.com/releases/2011/10/111026103124.htm>.
University of Cambridge. (2011, October 26). Chiral metal surfaces may help to manufacture pharmaceuticals; Novel approach could be used in pharmaceutical drug synthesis. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2011/10/111026103124.htm
University of Cambridge. "Chiral metal surfaces may help to manufacture pharmaceuticals; Novel approach could be used in pharmaceutical drug synthesis." ScienceDaily. www.sciencedaily.com/releases/2011/10/111026103124.htm (accessed October 31, 2014).

Share This



More Matter & Energy News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Jaguar Land Rover Opens $800 Million Factory in Britain

Jaguar Land Rover Opens $800 Million Factory in Britain

AFP (Oct. 30, 2014) British luxury car manufacturer Jaguar Land Rover opened a $800 million engine manufacturing centre in western England, creating 1,400 jobs. Duration: 00:45 Video provided by AFP
Powered by NewsLook.com
SkyCruiser Concept Claims to Solve Problem With Flying Cars

SkyCruiser Concept Claims to Solve Problem With Flying Cars

Buzz60 (Oct. 30, 2014) A start-up company called Krossblade says its SkyCruiser concept flying car solves the problem with most flying car concepts. Mara Montalbano (@maramontalbano) explains. Video provided by Buzz60
Powered by NewsLook.com
Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins