Featured Research

from universities, journals, and other organizations

Solar power could get boost from new light absorption design

Date:
November 3, 2011
Source:
Northwestern University
Summary:
Researchers have developed a new material that absorbs a wide range of wavelengths and could lead to more efficient and less expensive solar technology.

Metal grating developed by Koray Aydin's research team.
Credit: Image courtesy of Northwestern University

Solar power may be on the rise, but solar cells are only as efficient as the amount of sunlight they collect. Under the direction of a new McCormick professor, researchers have developed a new material that absorbs a wide range of wavelengths and could lead to more efficient and less expensive solar technology.

Related Articles


A paper describing the findings, "Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," was published November 1 in the journal Nature Communications.

"The solar spectrum is not like a laser -- it's very broadband, starting with UV and going up to near-infrared," said Koray Aydin, assistant professor of electrical engineering and computer science and the paper's lead author. "To capture this light most efficiently, a solar cell needs to have a broadband response. This design allows us to achieve that."

The researchers used two unconventional materials -- metal and silicon oxide -- to create thin but complex, trapezoid-shaped metal gratings on the nanoscale that can trap a wider range of visible light. The use of these materials is unusual because on their own, they do not absorb light; however, they worked together on the nanoscale to achieve very high absorption rates, Aydin said.

The uniquely shaped grating captured a wide range of wavelengths due to the local optical resonances, causing light to spend more time inside the material until it gets absorbed. This composite metamaterial was also able to collect light from many different angles -- a useful quality when dealing with sunlight, which hits solar cells at different angles as sun moves from east to west throughout the day.

This research is not directly applicable to solar cell technology because metal and silicon oxide cannot convert light to electricity; in fact, the photons are converted to heat and might allow novel ways to control the heat flow at the nanoscale. However, the innovative trapezoid shape could be replicated in semiconducting materials that could be used in solar cells, Aydin said.

If applied to semiconducting materials, the technology could lead to thinner, lower-cost, and more efficient solar cells, he said.


Story Source:

The above story is based on materials provided by Northwestern University. The original article was written by Sarah Ostman. Note: Materials may be edited for content and length.


Journal Reference:

  1. Koray Aydin, Vivian E. Ferry, Ryan M. Briggs, Harry A. Atwater. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature Communications, 2011; 2: 517 DOI: 10.1038/ncomms1528

Cite This Page:

Northwestern University. "Solar power could get boost from new light absorption design." ScienceDaily. ScienceDaily, 3 November 2011. <www.sciencedaily.com/releases/2011/11/111102125555.htm>.
Northwestern University. (2011, November 3). Solar power could get boost from new light absorption design. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2011/11/111102125555.htm
Northwestern University. "Solar power could get boost from new light absorption design." ScienceDaily. www.sciencedaily.com/releases/2011/11/111102125555.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cablevision Enters Wi-Fi Phone Fray

Cablevision Enters Wi-Fi Phone Fray

Reuters - Business Video Online (Jan. 26, 2015) The entry by Cablevision and Google could intensify the already heated price wars for mobile phone service. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Hector the Robot Mimics a Giant Stick Insect

Hector the Robot Mimics a Giant Stick Insect

Reuters - Innovations Video Online (Jan. 26, 2015) A robot based on a stick insect can navigate difficult terrain autonomously and adapt to its surroundings. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com
Obama's Wildlife Plan Renews Alaska Drilling Debate

Obama's Wildlife Plan Renews Alaska Drilling Debate

Newsy (Jan. 26, 2015) President Obama&apos;s proposal aims to protect more land in the Arctic National Wildlife Refuge, but so far, all that&apos;s materialized is a war of words. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins