Featured Research

from universities, journals, and other organizations

Bats, dolphins, and mole rats inspire advances in ultrasound technology

Date:
November 15, 2011
Source:
American Friends of Tel Aviv University
Summary:
Researchers are using a unique method to interpret and manipulate the pings and echoes that bats, dolphins, and mole rats use for learning about their environments and capturing their prey. With this knowledge, he's created mathematical models that may significantly improve the accuracy of existing medical and navigational technologies.

Long eared bat.
Credit: Geza Farkas / Fotolia

Sonar and ultrasound, which use sound as a navigational device and to paint accurate pictures of an environment, are the basis of countless technologies, including medical ultrasound machines and submarine navigation systems. But when it comes to more accurate sonar and ultrasound, animals' "biosonar" capabilities still have the human race beat.

Related Articles


But not for long. In a new project that studies bats, dolphins, and mole rats, Prof. Nathan Intrator of Tel Aviv University's Blavatnik School of Computer Science, in collaboration with Brown University's Prof. Jim Simmons, is working to identify what gives biosonar the edge over human-made technologies. Using a unique method for measuring how the animals interpret the returning signals, Prof. Intrator has determined that the key to these animals' success is superior, real-time data processing. "Animal 'echolocations' are done in fractions of milliseconds, at a resolution so high that a dolphin can see a tennis ball from approximately 260 feet away," he says, noting that the animals are able to process several pieces of information simultaneously.

Their research, which has been reported in the Journal of the Acoustical Society of America and presented at the 2010 and 2011 MLSP conferences, could lead to cutting-edge navigation systems and more accurate medical imaging.

Detecting "shape" from sound

Biosonar animals send ultrasonic sounds called "pings" into the environment. The shape of the returning signals, or echoes, determines how these animals "see" their surroundings, helping them to navigate or hunt for prey. In a matter of tens of milliseconds, the neurons in the animal's brain are capable of a full-scale analysis of their surroundings represented in three dimensions, with little energy consumption. Even with the aid of a supercomputer, which consumes thousands of times more energy, humans cannot produce such an accurate picture, Prof. Intrator says. With echolocation, a bat can tell the difference between a fly in motion or at rest, or determine which of two fruits is heavier by observing their movements in the wind.

Intrigued by the quality of the natural world's biosonar over its human-made equivalents, Profs. Intrator and Simmons set out to study how biosonar animals perform echo location so quickly and accurately. Using an electronic system, they altered the frequency and noise levels of the echo returned to the animal.

By manipulating the echo, the researchers could determine what factors of the returning signal reduced an animal's ability to correctly analyze the returns. This in turn led to a better understanding of how the returning echoes are represented and analyzed in the animal's brain.

A more accurate view of the human body

Prof. Intrator and his fellow researchers have created mathematical models, involving machine learning and signal processing, that improve man's ability to interpret the echoes.This will lead to more accurate echo localization and better resilience to background noise.

Once researchers gather more information about animal interpretation of biosonar, they will be able to mimic this technology for better ultrasound and sonar systems, says Prof. Intrator. "Animals explore pings with multiple filters or receptive fields, and we have demonstrated that exploring each ping in multiple ways can lead to higher accuracy," he explains. "By understanding sonar animals, we can create a new family of ultrasound systems that will be able to explore our bodies with more accurate medical imaging."

This could provide a variety of benefits to the medical field, such as earlier detection of defects in embryos or non-invasive detection of cancer tumors. Unlike an MRI or CT machine, which are large, expensive to operate, and often use dangerous radiation, the new generation of ultrasound machines could be used in a doctor's office at a fraction of the cost. The research could also benefit military reconnaissance efforts both underwater and underground.


Story Source:

The above story is based on materials provided by American Friends of Tel Aviv University. Note: Materials may be edited for content and length.


Cite This Page:

American Friends of Tel Aviv University. "Bats, dolphins, and mole rats inspire advances in ultrasound technology." ScienceDaily. ScienceDaily, 15 November 2011. <www.sciencedaily.com/releases/2011/11/111114112240.htm>.
American Friends of Tel Aviv University. (2011, November 15). Bats, dolphins, and mole rats inspire advances in ultrasound technology. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2011/11/111114112240.htm
American Friends of Tel Aviv University. "Bats, dolphins, and mole rats inspire advances in ultrasound technology." ScienceDaily. www.sciencedaily.com/releases/2011/11/111114112240.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Obama Reveals Nuclear Breakthrough on Landmark India Trip

Obama Reveals Nuclear Breakthrough on Landmark India Trip

Reuters - News Video Online (Jan. 25, 2015) In a glow of bonhomie, U.S. President Barack Obama and Indian Prime Minister Narendra Modi unveil a deal aimed at unlocking billions of dollars in nuclear trade. Pavithra George reports. Video provided by Reuters
Powered by NewsLook.com
NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins