Featured Research

from universities, journals, and other organizations

Controlled disorder: Scientists find way to form random molecular patterns

Date:
December 1, 2011
Source:
University of Nottingham
Summary:
Scientists have discovered a way to control how tiny flat molecules fit together in a seemingly random pattern.

Scientists at The University of Nottingham have discovered a way to control how tiny flat molecules fit together in a seemingly random pattern.

The researchers have been studying molecules which resemble tiny rhombus/diamond shaped tiles, with a side length of around 2 nanometres -- 2 billionths of a metre.

The fundamental research, published in the journal Nature Chemistry, has shown that they can prompt the 'tiles' to form a range of random patterns by adjusting the conditions in which the experiment is conducted.

Lead author Dr Andrew Stannard, in the University's School of Physics and Astronomy said: "To construct some sort of nanoscale device composed of molecules, one needs to understand how those molecules will interact with one another.

"Typically, a useful device would be one in which the molecules arrange themselves in some perfectly ordered, regular manner. What we have studied here is almost the complete opposite -- we have purposely tried to make the assemblies of molecules as random as possible.

"However, if we can gain a complete understanding of how randomness and disorder arises in these types of molecular structures, we can better understand how to eradicate that disorder when we want to create something functional."

Tilings of various geometrical shapes have interested scientists, mathematicians, and artists for centuries, and a wide range of tilings can be seen adorning many medieval architectural structures, as well as for practical purposes in our more modern kitchens and bathrooms.

But tile effects occur naturally within nature and science too and tilings of rhombuses are of particular interest to physicists, mathematicians and computer scientists because of their ability to form both periodic (regular, repeating patterns) and nonperiodic (random) patterns.

The Nottingham scientists have demonstrated for the first time that the generation of molecular rhombus tilings with varying degrees of orderliness -- some very random, some very ordered -- can be achieved by varying the conditions of the experiment in which they are created.

The achievement is all the more remarkable considering the range of experimental conditions in which this can be achieved is extremely narrow, requiring the scientists to achieve a delicate balance between energy and entropy -- the subjects of the first and second laws of thermodynamics, some of the fundamental laws of physics and, in the case of entropy, are linked to order and disorder within a thermodynamic system.


Story Source:

The above story is based on materials provided by University of Nottingham. Note: Materials may be edited for content and length.


Journal Reference:

  1. Andrew Stannard, James C. Russell, Matthew O. Blunt, Christos Salesiotis, María del Carmen Giménez-López, Nassiba Taleb, Martin Schröder, Neil R. Champness, Juan P. Garrahan, Peter H. Beton. Broken symmetry and the variation of critical properties in the phase behaviour of supramolecular rhombus tilings. Nature Chemistry, 2011; DOI: 10.1038/nchem.1199

Cite This Page:

University of Nottingham. "Controlled disorder: Scientists find way to form random molecular patterns." ScienceDaily. ScienceDaily, 1 December 2011. <www.sciencedaily.com/releases/2011/11/111130095106.htm>.
University of Nottingham. (2011, December 1). Controlled disorder: Scientists find way to form random molecular patterns. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2011/11/111130095106.htm
University of Nottingham. "Controlled disorder: Scientists find way to form random molecular patterns." ScienceDaily. www.sciencedaily.com/releases/2011/11/111130095106.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Newsy (July 28, 2014) — Stanford University published its findings for a "pure" lithium ion battery that could have our everyday devices and electric cars running longer. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) — AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Shipping Crates Get New 'lease' On Life

Shipping Crates Get New 'lease' On Life

Reuters - Business Video Online (July 25, 2014) — Shipping containers have been piling up as America imports more than it exports. Some university students in Washington D.C. are set to get a first-hand lesson in recycling. Their housing is being built using refashioned shipping containers. Lily Jamali reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) — Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins