Featured Research

from universities, journals, and other organizations

Earthquake friction effect demonstrated at the nanoscale

Date:
November 30, 2011
Source:
University of Pennsylvania
Summary:
Earthquakes are some of the most daunting natural disasters that scientists try to analyze. Though Earth's major fault lines are well known, there is little scientists can do to predict when an earthquake will occur or how strong it will be. And, though earthquakes involve millions of tons of rock, a team of researchers has helped discover an aspect of friction on the nanoscale that may lead to a better understanding of the disasters.

A photo illustration of an atomic force microscope probing the San Andreas fault.
Credit: Photo: D.K. Lynch

Earthquakes are some of the most daunting natural disasters that scientists try to analyze. Though Earth's major fault lines are well known, there is little scientists can do to predict when an earthquake will occur or how strong it will be. And, though earthquakes involve millions of tons of rock, a team of University of Pennsylvania and Brown University researchers has helped discover an aspect of friction on the nanoscale that may lead to a better understanding of the disasters.

Related Articles


Robert Carpick, a professor who chairs the Department of Mechanical Engineering and Applied Mechanics in Penn's School of Engineering and Applied Science, led the research in collaboration with Terry Tullis and David Goldsby, professors of geological science at Brown. The experimental and modeling work was conducted by first author Qunyang Li, a postdoctoral researcher in Carpick's group, who has recently been appointed an associate professor in the School of Aerospace at Tsinghua University, China.

Their work will be published in the journal Nature.

The team's research was spurred by an unusual phenomenon that has been observed in both natural and laboratory-simulated faults: materials become more resistant to sliding the longer they are in contact with one another. This trait is actually fundamental to why earthquakes happen at all. The longer materials are in contact, the stronger the resistance between them and the more violent and unstable the subsequent sliding is. Energy is stored over the time the materials are in contact and is then catastrophically released as an earthquake.

While geologists, physicists and mechanics researchers have studied this phenomenon for decades, the mechanism behind this increase of friction over time has only been hypothesized. There are two main theories as to why this "frictional aging" occurs.

"One hypothesis is that points of contact deform and grow over time -- that contact quantity increases," Carpick said. "The other is that bonding at the points of contact strengthens over time -- that contact quality increases."

The difficulty in proving that either theory holds true lies in the fact that points of contact are necessarily embedded at the juncture of two materials and are therefore hard to observe. One of the original breakthrough experiments on these theories projected light through transparent materials held together to measure the growth of apparent contact points. While this lent credence to the contact quantity theory, there was not yet a way to assess the bond strengths at those individual points of contacts or to be sure that the observations were of single points of contacts or clusters of even smaller nanoscale contacts.

It was not until Carpick and Tullis met at a conference designed to bring physicists and mechanics researchers together with geologists that they realized that the tools of the former group could resolve the latter group's contact quality theory. The solution came from moving from the massive scale of earthquakes to the smallest scales imaginable.

"We want to simplify the case," Li said. "So in our experiment we look at only one point of contact: the tip of an atomic force microscope."

An atomic force microscope is an ideal tool for investigating bonding strength where two surfaces meet. Instead of using light, atomic force microscopes measure nanoscale details using an extremely sharp probe tip that is sensitive to the push and pull of individual atoms.

The researchers simulated rock-on-rock contact with silica, a major component in most geological materials. They pressed a silica tip against a silica surface for different lengths of time and then dragged it to measure the amount of friction it experienced. They repeated these experiments with surfaces made out of different materials: diamond and graphite. Critically, both diamond and graphite are chemically inert. As they don't easily form chemical bonds with silica, any frictional aging that occurred with them would necessarily be due to changing contact area and not increased bond strength.

The results showed a stark difference in the frictional aging between the materials.

"We saw a huge amount of aging with silica on silica. But with silica on diamond or graphite, even though the tip is experiencing about the same stress levels, we see almost no aging," Li said. "If the increasing contact area was responsible for the increase in frictional aging, you would see similar amounts in these cases. You might even see more aging with diamond because it is stiffer, leading to a slightly higher stress level in the silica, and this would cause more deformation on the tip."

The frictional aging seen in the silica-on-silica experiment was so intense that the researchers had another mystery on their hands: how to reconcile strong aging on the nanoscale with the weaker level seen on the macroscale where earthquakes actually occur.

The solution to that puzzle stems from the fact that not all contact points are created equal. Two different contact points on the same surface that are close to one another will sense each other's presence. This "elastic coupling," as it is known, means that only a few of the contact points within an area will be resisting the sliding motion at their full capacity; some will have started to slide earlier, and others will slide later. It is too difficult to make them all slide at once.

So, the overall level of resistance relies not only on the maximum resistance any contact point can provide, but also on the small fraction of contact points able to provide this resistance.

"When you take a lot of contact points,"Carpick said, "all of them could have this large amount of aging. But when you try to shear them, you see only a small fraction reach that very high value of friction at any given time. So, you need a very large effect on the level of a single contact point to get even a very modest effect on the macroscopic scale."

While showing that nansocale experiment can provide useful data for these kinds of applications was in itself an important finding for the research team, the ability to reconcile the laboratory data with geologists' observations will have a lasting effect on the field.

"If we can understand the fundamental physics," Tullis said, "then theories and equations based on that physics would have the capability of being extrapolated beyond the laboratory scale. Therefore we could use them with more confidence in all the earthquake modeling that's already being done."

"We're not ruling out the quantity argument, we're just ruling in the quality argument," Carpick said. "Future research will go to higher stress levels, where maybe contact quantity could start to come into play. We'd also like to look at different temperatures, which matter in the geological context, and do experiments where we can actually watch the contact in real time, using an electron microscope."

The research was supported by the National Science Foundation.


Story Source:

The above story is based on materials provided by University of Pennsylvania. Note: Materials may be edited for content and length.


Journal Reference:

  1. Qunyang Li, Terry E. Tullis, David Goldsby, Robert W. Carpick. Frictional ageing from interfacial bonding and the origins of rate and state friction. Nature, 2011; DOI: 10.1038/nature10589

Cite This Page:

University of Pennsylvania. "Earthquake friction effect demonstrated at the nanoscale." ScienceDaily. ScienceDaily, 30 November 2011. <www.sciencedaily.com/releases/2011/11/111130141849.htm>.
University of Pennsylvania. (2011, November 30). Earthquake friction effect demonstrated at the nanoscale. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2011/11/111130141849.htm
University of Pennsylvania. "Earthquake friction effect demonstrated at the nanoscale." ScienceDaily. www.sciencedaily.com/releases/2011/11/111130141849.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com
3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) — A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins