Featured Research

from universities, journals, and other organizations

Acquired traits can be inherited via small RNAs

Date:
December 6, 2011
Source:
Columbia University Medical Center
Summary:
Researchers have found the first direct evidence that an acquired trait can be inherited without any DNA involvement. The findings suggest that Lamarck, whose theory of evolution was eclipsed by Darwin's, may not have been entirely wrong.

In an early theory of evolution, Jean Baptiste Larmarck (1744-1829) proposed that species evolve when individuals adapt to their environment and transmit those acquired traits to their offspring. For example, giraffes developed elongated long necks as they stretched to feed on the leaves of high trees, an acquired advantage that was inherited by subsequent generations.
Credit: © bonniemarie / Fotolia

Columbia University Medical Center (CUMC) researchers have found the first direct evidence that an acquired trait can be inherited without any DNA involvement. The findings suggest that Lamarck, whose theory of evolution was eclipsed by Darwin's, may not have been entirely wrong.

The study is slated to appear in the Dec. 9 issue of Cell.

"In our study, roundworms that developed resistance to a virus were able to pass along that immunity to their progeny for many consecutive generations," reported lead author Oded Rechavi, PhD, associate research scientist in biochemistry and molecular biophysics at CUMC. "The immunity was transferred in the form of small viral-silencing agents called viRNAs, working independently of the organism's genome."

In an early theory of evolution, Jean Baptiste Larmarck (1744-1829) proposed that species evolve when individuals adapt to their environment and transmit those acquired traits to their offspring. For example, giraffes developed elongated long necks as they stretched to feed on the leaves of high trees, an acquired advantage that was inherited by subsequent generations. In contrast, Charles Darwin (1809-1882) later theorized that random mutations that offer an organism a competitive advantage drive a species' evolution. In the case of the giraffe, individuals that happened to have slightly longer necks had a better chance of securing food and thus were able to have more offspring. The subsequent discovery of hereditary genetics supported Darwin's theory, and Lamarck's ideas faded into obscurity.

However, some evidence suggests that acquired traits can be inherited. "The classic example is the Dutch famine of World War II," said Dr. Rechavi. "Starving mothers who gave birth during the famine had children who were more susceptible to obesity and other metabolic disorders -- and so were their grandchildren." Controlled experiments have shown similar results, including a recent study in rats demonstrating that chronic high-fat diets in fathers result in obesity in their female offspring.

Nevertheless, Lamarckian inheritance has remained controversial, and no one has been able to describe a plausible biological mechanism, according to study leader Oliver Hobert, PhD, professor of biochemistry and molecular biophysics and a Howard Hughes Medical Institute Investigator at CUMC.

Dr. Hobert suspected that RNA interference (RNAi) might be involved in the inheritance of acquired traits. RNAi is a natural process that cells use to turn down, or silence, specific genes. It is commonly employed by organisms to fend off viruses and other genomic parasites. RNAi works by destroying mRNA, the molecular messengers that carry information coded in a gene to the cell's protein-making machinery. Without its mRNA, a gene is essentially inactive.

RNAi is triggered by doubled-stranded RNA (dsRNA), which is not found in healthy cells. When dsRNA molecules (for example, from a virus) enter a cell, they are sliced into small fragments, which guide the cell's RNAi machinery to find mRNAs that match the genetic sequence of the fragments. The machinery then degrades these mRNAs, in effect destroying their messages and silencing the corresponding gene.

RNAi can be also triggered artificially by administering exogenous (externally derived) dsRNA. Intriguingly, the resultant gene-silencing occurs not only in the treated animal, but also in its offspring. However, it was not clear whether this effect is due to the inheritance of RNAs or to changes in the organism's genome -- or whether this effect has any biological relevance.

To look further into these phenomena, the CUMC researchers turned to the roundworm (C. elegans). The roundworm has an unusual ability to fight viruses, which it does using RNAi.

In the current study, the researchers infected roundworms with Flock House virus (the only virus known to infect C. elegans) and then bred the worms in such a way that some of their progeny had nonfunctional RNAi machinery. When those progeny were exposed to the virus, they were still able to defend themselves. "We followed the worms for more than one hundred generations -- close to a year -- and the effect still persisted," said Dr. Rechavi.

The experiments were designed so that the worms could not have acquired viral resistance through genetic mutations. The researchers concluded that the ability to fend off the virus was "memorized" in the form of small viral RNA molecules, which were then passed to subsequent generations in somatic cells, not exclusively along the germ line.

According to the CUMC researchers, Lamarckian inheritance may provide adaptive advantages to an animal. "Sometimes, it is beneficial for an organism to not have a gene expressed," explained Dr. Hobert. "The classic, Darwinian way this occurs is through a mutation, so that the gene is silenced either in every cell or in specific cell types in subsequent generations. While this is obviously happening a lot, one can envision scenarios in which it may be more advantageous for an organism to hold onto that gene and pass on the ability to silence the gene only when challenged with a specific threat. Our study demonstrates that this can be done in a completely new way: through the transmission of extrachromosomal information. The beauty of this approach is that it's reversible."

Any therapeutic implications of the findings are a long way off, Dr. Rechavi added. "The basic components of the RNAi machinery exist throughout the animal kingdom, including humans. Worms have an extra component, giving them a much stronger RNAi response. Theoretically, if that component could be incorporated in humans, then maybe we could improve our immunity and even our children's immunity."

The CUMC team is currently examining whether other traits are also inherited through small RNAs. "In one experiment, we are going to replicate the Dutch famine in a Petri dish," said Dr. Rechavi. "We are going to starve the worms and see whether, as a result of starvation, we see small RNAs being generated and passed to the next generation." 

This research was supported by the Howard Hughes Medical Institute and Gruss Lipper and Bikura Fellowships to Oded Rechavi.


Story Source:

The above story is based on materials provided by Columbia University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Oded Rechavi, Gregory Minevich, Oliver Hobert. Transgenerational Inheritance of an Acquired Small RNA-Based Antiviral Response in C. elegans. Cell, 2011; DOI: 10.1016/j.cell.2011.10.042

Cite This Page:

Columbia University Medical Center. "Acquired traits can be inherited via small RNAs." ScienceDaily. ScienceDaily, 6 December 2011. <www.sciencedaily.com/releases/2011/12/111205102713.htm>.
Columbia University Medical Center. (2011, December 6). Acquired traits can be inherited via small RNAs. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2011/12/111205102713.htm
Columbia University Medical Center. "Acquired traits can be inherited via small RNAs." ScienceDaily. www.sciencedaily.com/releases/2011/12/111205102713.htm (accessed April 23, 2014).

Share This



More Plants & Animals News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Leopard Bites Man in India

Raw: Leopard Bites Man in India

AP (Apr. 22, 2014) — A leopard caused panic in the city of Chandrapur on Monday when it sprung from the roof of a house and charged at rescue workers. (April 22) Video provided by AP
Powered by NewsLook.com
Iowa College Finds Beauty in Bulldogs

Iowa College Finds Beauty in Bulldogs

AP (Apr. 22, 2014) — Drake University hosts 35th annual Beautiful Bulldog Contest. (April 21) Video provided by AP
Powered by NewsLook.com
805-Pound Shark Caught Off The Coast Of Florida

805-Pound Shark Caught Off The Coast Of Florida

Newsy (Apr. 22, 2014) — One Florida fisherman caught a 805-pound shark off the coast of Florida earlier this month. Video provided by Newsy
Powered by NewsLook.com
Breakfast Foods Are Getting Pricier

Breakfast Foods Are Getting Pricier

AP (Apr. 21, 2014) — Breakfast is now being served with a side of sticker shock. The cost of morning staples like bacon, coffee and orange juice is on the rise because of global supply problems. (April 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins