Featured Research

from universities, journals, and other organizations

Extracellular matrix could lead to advances in regenerative medicine

Date:
January 5, 2012
Source:
National Physical Laboratory
Summary:
Scientists have created a functional model of the native extracellular matrix that provides structural support to cells to aid growth and proliferation. The model could lead to advances in regenerative medicine. The extracellular matrix provides the physical and chemical conditions that enable the development of all biological tissues. It is a complex nano-to-microscale structure made up of protein fibers and serves as a dynamic substrate that supports tissue repair and regeneration.

Atomic Force Microscopy (AFM) image of the designed extracellular matrix.
Credit: Image courtesy of National Physical Laboratory

NPL scientists have created a functional model of the native extracellular matrix which provides structural support to cells to aid growth and proliferation and could lead to advances in regenerative medicine.

Related Articles


The extracellular matrix (ECM) provides the physical and chemical conditions that enable the development of all biological tissues. It is a complex nano-to-microscale structure made up of protein fibres and serves as a dynamic substrate that supports tissue repair and regeneration.

Human-made structures designed to mimic and replace the native matrix in damaged or diseased tissues are highly sought after to advance our understanding of tissue organisation and to make regenerative medicine a reality.

Self-assembling peptide fibres that have similar properties to those of the native matrices are of particular interest. However, these near-crystalline nanostructures fail to arrange themselves into interconnected meshes at the microscopic scale, which is critical for bringing cells together and supporting tissue development.

To solve this problem, a research team at NPL designed a small protein consisting of two complementary domains (structural units) that promote the formation of highly branched networks of fibres that span microscopic dimensions. The team showed that the created matrix is very efficient in supporting cell attachment, growth and proliferation.

This research is part of the NPL-led international research project, 'Multiscale measurements in biophysical systems', which is jointly funded by NPL and the Scottish Universities Physics Alliance.

Read the full article detailing this research published in Angewandte Chemie -- the premier and most authoritative publication for critical advances in chemical research.


Story Source:

The above story is based on materials provided by National Physical Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Angelo Bella, Santanu Ray, Michael Shaw, Maxim G. Ryadnov. Arbitrary Self-Assembly of Peptide Extracellular Microscopic Matrices. Angewandte Chemie International Edition, 2011; DOI: 10.1002/anie.201104647

Cite This Page:

National Physical Laboratory. "Extracellular matrix could lead to advances in regenerative medicine." ScienceDaily. ScienceDaily, 5 January 2012. <www.sciencedaily.com/releases/2011/12/111220102532.htm>.
National Physical Laboratory. (2012, January 5). Extracellular matrix could lead to advances in regenerative medicine. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2011/12/111220102532.htm
National Physical Laboratory. "Extracellular matrix could lead to advances in regenerative medicine." ScienceDaily. www.sciencedaily.com/releases/2011/12/111220102532.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com
Analysis: NTSB Wants Better Black Boxes

Analysis: NTSB Wants Better Black Boxes

AP (Jan. 22, 2015) NTSB investigators recommended Thursday that long-distance passenger planes carry improved technology to allow them to be found more easily in a crash, as well as include enhanced cockpit recording technology. (Jan. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins