Featured Research

from universities, journals, and other organizations

Amplifier helps diamond spy on atoms

Date:
January 3, 2012
Source:
University of Oxford
Summary:
An 'amplifier' molecule placed on the tip of a diamond could help scientists locate and identify individual atoms, scientists believe.

An illustration of the proposed device.
Credit: Image courtesy of University of Oxford

An 'amplifier' molecule placed on the tip of a diamond could help scientists locate and identify individual atoms, Oxford University and Singapore scientists believe.

The idea builds on ongoing work towards creating a diamond nanocrystal that can be used to detect an atom's incredibly weak magnetic field. Defects within the diamond hold electrons that act rather like a compass, lining up with even the very weak magnetic field emanating from the core of an atom.

Crucially this diamond compass can be 'read' by shining a pulse of laser light into the crystal giving information about the location and type of atom -- for instance telling the difference between a carbon and hydrogen atom and giving their exact location within a structure such as a virus or new material.

'The problem with this approach is that the 'compass' only behaves well if it is buried within the diamond: this makes it very difficult to get it close enough to a structure to detect an individual atom's magnetic field,' said Dr Simon Benjamin of Oxford University's Department of Materials and National University of Singapore. 'It's a bit like trying to grasp one particular marble out of a bucket of marbles whilst wearing an oven glove.

'The new research, which the team recently report in Physical Review Letters, calculates that by attaching another 'compass' -- the amplifier molecule -- to the tip of the diamond this will pass the information about an atom along to the compass inside the diamond that can then be read.

'Our calculations show for the first time how such an amplifier could be used to make a diamond probe sensitive enough to pinpoint and identify individual atomic cores,' said Dr Benjamin. 'If this can be made to work, the additional information we would gain would be rather like moving from black and white photographs of atoms to full colour.

'Dr Erik Gauger of Oxford University's Department of Materials and National University of Singapore, an author of the paper with Dr Benjamin, said: 'The device that we propose may well represent the limit of what is possible in terms of magnetic field sensitivity and resolution; if, as we hope, it allows direct identification of atoms by their core signatures, then it will be a revolutionary tool in chemistry, biology and medicine.'

The team believe that it may only be a couple of years before diamond probes are created that will reveal the world of the atom in unprecedented detail but that the small step of adding an amplifier could make such systems many times more powerful.


Story Source:

The above story is based on materials provided by University of Oxford. Note: Materials may be edited for content and length.


Journal Reference:

  1. Marcus Schaffry, Erik Gauger, John Morton, Simon Benjamin. Proposed Spin Amplification for Magnetic Sensors Employing Crystal Defects. Physical Review Letters, 2011; 107 (20) DOI: 10.1103/PhysRevLett.107.207210

Cite This Page:

University of Oxford. "Amplifier helps diamond spy on atoms." ScienceDaily. ScienceDaily, 3 January 2012. <www.sciencedaily.com/releases/2011/12/111220204454.htm>.
University of Oxford. (2012, January 3). Amplifier helps diamond spy on atoms. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2011/12/111220204454.htm
University of Oxford. "Amplifier helps diamond spy on atoms." ScienceDaily. www.sciencedaily.com/releases/2011/12/111220204454.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins