Featured Research

from universities, journals, and other organizations

nanoCAGE reveals transcriptional landscape of the mouse main olfactory epithelium

Date:
January 5, 2012
Source:
RIKEN
Summary:
The problem in biology of how to identify the promoters of olfactory receptor genes (>1000 genes) has remained unsolved due to the difficulty of purifying sufficient material from the olfactory epithelium. Researchers have now solved this problem using nanoCAGE technology, which enables comprehensive analysis of transcription start sites (TSSs) from tiny biological samples.

MOE transcription start sites recapitulate known transcript initiation and reveal the extent of non-coding transcripts. Histogram depicting the proportion of tags aligned to the proximal promoter of transcript models (defined as the region spanning from the 5' end to 500 bp upstream), the 5' UTR, the coding sequence (CDS), the 3' UTR (in decreasing purple colors), the proximal promoter of FANTOM3 non-coding RNA (in orange), and the FANTOM3 non-coding RNA (in light orange). The upper part of the bar plot shows TSSs located on the same strand as the annotation, while the lower part depicts TSSs located on the opposite strand. The percentage of TSSs that do not colocalize with any of those annotations is represented by the grey bar.
Credit: Image courtesy of RIKEN

The problem in biology of how to identify the promoters of olfactory receptor genes (>1000 genes) has remained unsolved due to the difficulty of purifying sufficient material from the olfactory epithelium. Researchers at the RIKEN Omics Science Center, collaborating with scientists from Italy, Norway, the United States, the United Kingdom and Germany, have now solved this problem using nanoCAGE technology, which enables comprehensive analysis of transcription start sites (TSSs) from tiny biological samples.

In mouse, odor is sensed by the main olfactory epithelium (MOE) by about 1100 types of olfactory receptors that are expressed by olfactory sensory neurons. Interestingly, each sensory neuron expresses only a single type of olfactory receptors, whose selective expression mechanism remains largely unknown. The population of olfactory sensory neurons that express a given olfactory receptor is small, which makes transcription analysis difficult.

Researchers at the RIKEN Omics Science Center recently developed nanoCAGE (CAGE: Cap Analysis of Gene Expression), the only technology that can comprehensively identify precise TSSs of both protein-coding and non-coding capped mRNAs and quantify their individual levels of expression starting from tiny biological samples of only a few nanograms of RNA (Plessy et al., Nature Methods, 7, 528-534, 2010). By using nanoCAGE on the MOE, the researchers succeeded in identifying 87.5% of the olfactory receptor gene TSSs. The results show for the first time that olfactory receptor genes contain hundreds of non-coding RNAs, suggesting that these RNAs may play important roles in the transcriptional regulation of olfactory receptors.

Dr. Piero Carninci commented, "Combined with CAGE, nanoCAGE technology provides a new opportunity to unveil gene networks in the nervous system using omics approaches."

The research is published in the journal Genome Research.


Story Source:

The above story is based on materials provided by RIKEN. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. Plessy, G. Pascarella, N. Bertin, A. Akalin, C. Carrieri, A. Vassalli, D. Lazarevic, J. Severin, C. Vlachouli, R. Simone, G. J. Faulkner, J. Kawai, C. O. Daub, S. Succhelli, Y. Hayashizaki, P. Mombaerts, B. Lenhard, S. Gustincich, P. Carninci. Promoter architecture of mouse olfactory receptor genes. Genome Research, 2011; DOI: 10.1101/gr.126201.111

Cite This Page:

RIKEN. "nanoCAGE reveals transcriptional landscape of the mouse main olfactory epithelium." ScienceDaily. ScienceDaily, 5 January 2012. <www.sciencedaily.com/releases/2012/01/120105101447.htm>.
RIKEN. (2012, January 5). nanoCAGE reveals transcriptional landscape of the mouse main olfactory epithelium. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2012/01/120105101447.htm
RIKEN. "nanoCAGE reveals transcriptional landscape of the mouse main olfactory epithelium." ScienceDaily. www.sciencedaily.com/releases/2012/01/120105101447.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
What's To Blame For Worst Ebola Outbreak In History?

What's To Blame For Worst Ebola Outbreak In History?

Newsy (July 27, 2014) A U.S. doctor has tested positive for the deadly Ebola virus, as the worst-ever outbreak continues to grow. Video provided by Newsy
Powered by NewsLook.com
The New York Times Backs Pot Legalization

The New York Times Backs Pot Legalization

Newsy (July 27, 2014) The New York Times has officially endorsed the legalization of marijuana, but why now, and to what end? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins