Featured Research

from universities, journals, and other organizations

Fewer animal experiments thanks to nanosensors

Date:
January 10, 2012
Source:
Fraunhofer-Gesellschaft
Summary:
Experiments on animals have been the subject of criticism for decades, but there is no prospect of a move away from them any time soon. The number of tests involving laboratory animals has in fact gone up. Now, researchers have found an alternative approach: they hope sensor nanoparticles will reduce the need for animal testing.

The yellow nanosensor signal in the overlay image (right) shows that the cells are active. If they were unhealthy, they would appear much redder. Center: the indicator dye signal. Left: the reference dye signal
Credit: Copyright Fraunhofer EMFT

Experiments on animals have been the subject of criticism for decades, but there is no prospect of a move away from them any time soon. The number of tests involving laboratory animals has in fact gone up. Now, researchers have found an alternative approach: they hope sensor nanoparticles will reduce the need for animal testing.

Countless mice, rats and rabbits die every year in the name of science -- and the situation is getting worse. While German laboratories used some 2.41 million animals for scientific research in 2005, by 2009 this number had grown to 2.79 million. One third were destined for fundamental biology research, and the majority were used for researching diseases and developing medical compounds and devices. People demand medicines that are safe and therapies that are tolerable, but hardly anyone is happy to accept the need for animal testing. This is why scientists have spent years looking for methods that can replace them. Now researchers at the Fraunhofer Research Institution for Modular Solid State Technologies EMFT in Munich have found an alternative: they hope to use novel nanosensors to reduce the number of experiments that are carried out on animals. "We're basically using a test tube to study the effects of chemicals and their potential risks. What we do is take living cells, which were isolated from human and animal tissue and grown in cell cultures, and expose them to the substance under investigation," explains Dr. Jennifer Schmidt of the EMFT. If a given concentration of the substance is poisonous to the cell, it will die. This change in "well-being" can be rendered visible by the sensor nanoparticles developed by Dr. Schmidt and her team.

Cells -- the tiniest living things -- that are healthy store energy in the form of adenosine triphosphate (ATP). High levels of ATP are indicative of high levels of metabolic activity in cells. If a cell is severely damaged, it becomes less active, storing less energy and consequently producing less ATP. "Our nanosensors allow us to detect adenosine triphosphate and determine the state of health of cells. This makes it possible to assess the cell-damaging effects of medical compounds or chemicals," says Schmidt.

In order for the nanoparticles to register the ATP, researchers give them two fluorescent dyes: a green indicator dye that is sensitive to ATP, and a red reference dye that does not change color. Next, the scientists introduce the particles to living cells and observe them under a fluorescence microscope. The degree to which the particles light up depends on the quantity of ATP present. The more yellow is visible in the overlay image, the more active are the cells. If their health were impaired, the overlay image would appear much redder. "We could in future use cancer cells to test the effectiveness of newly developed chemotherapy agents. If the nanosensors detect a low concentration of ATP in the cells, we'll know that the new treatment is either inhibiting tumor cell growth or even killing them," says Schmidt. "The most promising agents could then be studied further."

The EMFT researchers' nanoparticles are extremely well suited to the task at hand: they are not poisonous to cells, they can easily pass through cell membranes, and they can even be directed to particular points where the effect of the test substance is of most interest. But before this procedure can be applied, it must first be approved by the regulatory authorities -- so the EMFT experts have a long journey ahead of them to gain approvals from various official bodies. This prospect has not, however, stopped the researchers from refining the technology and coming up with new applications for it -- for instance to test the quality of packaged meat and its fitness for consumption. To this end they have developed nanosensors that can determine concentrations of oxygen and toxic amines.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Fewer animal experiments thanks to nanosensors." ScienceDaily. ScienceDaily, 10 January 2012. <www.sciencedaily.com/releases/2012/01/120110102056.htm>.
Fraunhofer-Gesellschaft. (2012, January 10). Fewer animal experiments thanks to nanosensors. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2012/01/120110102056.htm
Fraunhofer-Gesellschaft. "Fewer animal experiments thanks to nanosensors." ScienceDaily. www.sciencedaily.com/releases/2012/01/120110102056.htm (accessed October 21, 2014).

Share This



More Plants & Animals News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com
White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins