Featured Research

from universities, journals, and other organizations

Unexpected discovery opens up new opportunities for targeting cancer

Date:
January 10, 2012
Source:
University of Leicester
Summary:
Scientists have opened up a whole new approach to the therapeutic intervention for a family of anti-cancer drug targets, thanks to a completely new and unexpected finding.

The atomic resolution structure of histone deacetylase 3 (dark grey surface), the corepressor SMRT (light grey sticks/ribbons) and the key signalling molecule IP4 (green / orange sticks).
Credit: Image courtesy of University of Leicester

Scientists at the University of Leicester have opened up a whole new approach to the therapeutic intervention for a family of anti-cancer drug targets, thanks to a completely new and unexpected finding.

Related Articles


Professor Schwabe and his colleagues, Drs Watson, Fairall and Santos, have published their research this week in journal Nature detailing a new understanding of how transcriptional repression complexes work. Their work, which is based around determining atomic resolution structures of medically important bio-molecular complexes, has been ongoing for six years, and is currently funded through a 1.4 million grant from The Wellcome Trust.

Transcriptional regulatory complexes play an important role in the regulation of development, differentiation, cancer and homeostasis. Transcription is the process of creating a complementary RNA copy of a sequence of DNA and is the first step in the process of gene expression.

Professor John Schwabe, of the University of Leicester's Department of Biochemistry, said: "We have discovered a completely new and unexpected link between inositol phosphate signalling (in this case IP4) and the regulation of histone deacetylase enzymes and hence transcriptional repression or gene silencing.

"In simple terms, we have shown that IP4 acts as a natural signalling molecule to regulate histone deacetylase enzymes which play a key role in regulating gene expression. Apart from the considerable intellectual importance of understanding how transcription is regulated, repression complexes are important therapeutic targets for a number of cancers including several types of leukemia.

"Our research identifies several new means to potentially target histone deacetylase enzymes therapeutically: either by using drugs to prevent IP4 binding to the enzyme or by interfering with the pathway through which the body makes IP4. Thus this work opens up a whole new area of research with potential for new drugs and a new approach to targeting histone deacetylase enzymes."

Professor Schwabe said that this research is not only an exciting breakthrough in the field, but is also a technological feat relying on both the excellent research facilities in Leicester and the microfocus X-ray source at the Diamond Light Source in Oxfordshire.


Story Source:

The above story is based on materials provided by University of Leicester. Note: Materials may be edited for content and length.


Journal Reference:

  1. Peter J. Watson, Louise Fairall, Guilherme M. Santos, John W. R. Schwabe. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature, 2012; DOI: 10.1038/nature10728

Cite This Page:

University of Leicester. "Unexpected discovery opens up new opportunities for targeting cancer." ScienceDaily. ScienceDaily, 10 January 2012. <www.sciencedaily.com/releases/2012/01/120110140233.htm>.
University of Leicester. (2012, January 10). Unexpected discovery opens up new opportunities for targeting cancer. ScienceDaily. Retrieved March 6, 2015 from www.sciencedaily.com/releases/2012/01/120110140233.htm
University of Leicester. "Unexpected discovery opens up new opportunities for targeting cancer." ScienceDaily. www.sciencedaily.com/releases/2012/01/120110140233.htm (accessed March 6, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, March 6, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Just A Half-Hour Of Lost Sleep Could Lead To Weight Gain

Just A Half-Hour Of Lost Sleep Could Lead To Weight Gain

Newsy (Mar. 6, 2015) A new study found losing just half an hour of sleep could make you gain weight. Video provided by Newsy
Powered by NewsLook.com
Suicide Rates Up For Young Women In U.S.

Suicide Rates Up For Young Women In U.S.

Newsy (Mar. 6, 2015) According to a report from the CDC, suicide rates among young women increased from 1994 to 2012 while rates among young men have decreased. Video provided by Newsy
Powered by NewsLook.com
Bupa Eyes India Healthcare Opportunities

Bupa Eyes India Healthcare Opportunities

Reuters - Business Video Online (Mar. 5, 2015) Bupa is hoping to expand in India&apos;s fast-growing health insurance market, once a rule change on foreign investment is implemented. The British private healthcare group&apos;s CEO tells Grace Pascoe why it&apos;s so keen on the new opportunity. Video provided by Reuters
Powered by NewsLook.com
Liberia Releases Last Ebola Patient, But Threat Remains

Liberia Releases Last Ebola Patient, But Threat Remains

Newsy (Mar. 5, 2015) Liberia&apos;s last Ebola patient has been released, and the country hasn&apos;t recorded a new case in a week. However, fears of another outbreak still exist. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins