Featured Research

from universities, journals, and other organizations

Genetic code cracked for a devastating blood parasite

Date:
January 18, 2012
Source:
University of Melbourne
Summary:
Scientists have cracked the genetic code and predicted some high priority drug targets for the blood parasite Schistosoma haematobium, which is linked to bladder cancer and HIV/ AIDS and causes the insidious urogenital disease schistosomiasis haematobia in more than 112 million people in Africa.

Scientists have cracked the genetic code and predicted some high priority drug targets for the blood parasite Schistosoma haematobium, which is linked to bladder cancer and HIV/ AIDS and causes the insidious urogenital disease schistosomiasis haematobia in more than 112 million people in Africa.

Schistomiasis is recognised by the World Health Organization as one of the most socioeconomically devastating diseases, besides malaria, and is in urgent need of extensive research and improved control.

Dr Neil Young and Professor Robin Gasser from the University of Melbourne's Faculty of Veterinary Science led the project conducted with the world's largest genome sequencing facility, BGI-Shenzhen and an international research team. They sequenced the nuclear genome of Schistosoma haematobium from a single pair of tiny worms using an advanced approach. The work has been published in the latest issue of the journal Nature Genetics.

Schistosoma haematobium is one of three related species of schistosome to be sequenced, but is the most devastating, particularly because of its link to cancer and AIDS. The other two species are Schistosoma mansoni (Africa and South America) and Schistosoma japonicum (in parts of Asia) which both cause intestinal/liver disease in humans.

"This genome was the missing piece of a puzzle in schistosomiasis research. By revealing the genetic blueprint of Schistosoma haematobium, we now have a biological road map of the three major parasite species responsible for human schistosomiasis globally. Most importantly, the genome of Schistosoma haematobium will offer insights into how the intimate relationship between a parasite and its human host can induce malignant bladder cancer," Dr Young said.

"Currently there is no vaccine and only one drug available to treat Schistosoma haematobium infection, so revealing its genetic blueprint provides an unprecedented resource for the design of new disease interventions, including drugs and vaccines."

Schistosoma haematobium is transmitted from a freshwater snail to humans. Worms dwell in blood vessels and release eggs that become embedded in the bladder wall, and cause chronic immune-mediated disease and induce cancer.

The research was conducted in collaboration with BGI-Shenzhen, PR China; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais Instituto de Pesquisa René Rachou-Fiocruz, Belo Horizonte, Brasil; Griffith University, Brisbane, Queensland, Australia; James Cook University, Cairns, Queensland, Australia; Macquarie University, Sydney, New South Wales, Australia; National University of Singapore, Singapore; Natural History Museum, London, UK; Universidad de la República, Montevideo, Uruguay; George Washington University, Washington DC, USA.

The research was jointly funded by the Australian Research Council, BGI-Shenzhen and the National Health and Medical Research Council.


Story Source:

The above story is based on materials provided by University of Melbourne. Note: Materials may be edited for content and length.


Journal Reference:

  1. Neil D Young, Aaron R Jex, Bo Li, Shiping Liu, Linfeng Yang, Zijun Xiong, Yingrui Li, Cinzia Cantacessi, Ross S Hall, Xun Xu, Fangyuan Chen, Xuan Wu, Adhemar Zerlotini, Guilherme Oliveira, Andreas Hofmann, Guojie Zhang, Xiaodong Fang, Yi Kang, Bronwyn E Campbell, Alex Loukas, Shoba Ranganathan, David Rollinson, Gabriel Rinaldi, Paul J Brindley, Huanming Yang, Jun Wang, Jian Wang, Robin B Gasser. Whole-genome sequence of Schistosoma haematobium. Nature Genetics, 2012; 44 (2): 221 DOI: 10.1038/ng.1065

Cite This Page:

University of Melbourne. "Genetic code cracked for a devastating blood parasite." ScienceDaily. ScienceDaily, 18 January 2012. <www.sciencedaily.com/releases/2012/01/120118111040.htm>.
University of Melbourne. (2012, January 18). Genetic code cracked for a devastating blood parasite. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2012/01/120118111040.htm
University of Melbourne. "Genetic code cracked for a devastating blood parasite." ScienceDaily. www.sciencedaily.com/releases/2012/01/120118111040.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins