Featured Research

from universities, journals, and other organizations

Genetic code cracked for a devastating blood parasite

Date:
January 18, 2012
Source:
University of Melbourne
Summary:
Scientists have cracked the genetic code and predicted some high priority drug targets for the blood parasite Schistosoma haematobium, which is linked to bladder cancer and HIV/ AIDS and causes the insidious urogenital disease schistosomiasis haematobia in more than 112 million people in Africa.

Scientists have cracked the genetic code and predicted some high priority drug targets for the blood parasite Schistosoma haematobium, which is linked to bladder cancer and HIV/ AIDS and causes the insidious urogenital disease schistosomiasis haematobia in more than 112 million people in Africa.

Related Articles


Schistomiasis is recognised by the World Health Organization as one of the most socioeconomically devastating diseases, besides malaria, and is in urgent need of extensive research and improved control.

Dr Neil Young and Professor Robin Gasser from the University of Melbourne's Faculty of Veterinary Science led the project conducted with the world's largest genome sequencing facility, BGI-Shenzhen and an international research team. They sequenced the nuclear genome of Schistosoma haematobium from a single pair of tiny worms using an advanced approach. The work has been published in the latest issue of the journal Nature Genetics.

Schistosoma haematobium is one of three related species of schistosome to be sequenced, but is the most devastating, particularly because of its link to cancer and AIDS. The other two species are Schistosoma mansoni (Africa and South America) and Schistosoma japonicum (in parts of Asia) which both cause intestinal/liver disease in humans.

"This genome was the missing piece of a puzzle in schistosomiasis research. By revealing the genetic blueprint of Schistosoma haematobium, we now have a biological road map of the three major parasite species responsible for human schistosomiasis globally. Most importantly, the genome of Schistosoma haematobium will offer insights into how the intimate relationship between a parasite and its human host can induce malignant bladder cancer," Dr Young said.

"Currently there is no vaccine and only one drug available to treat Schistosoma haematobium infection, so revealing its genetic blueprint provides an unprecedented resource for the design of new disease interventions, including drugs and vaccines."

Schistosoma haematobium is transmitted from a freshwater snail to humans. Worms dwell in blood vessels and release eggs that become embedded in the bladder wall, and cause chronic immune-mediated disease and induce cancer.

The research was conducted in collaboration with BGI-Shenzhen, PR China; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais Instituto de Pesquisa René Rachou-Fiocruz, Belo Horizonte, Brasil; Griffith University, Brisbane, Queensland, Australia; James Cook University, Cairns, Queensland, Australia; Macquarie University, Sydney, New South Wales, Australia; National University of Singapore, Singapore; Natural History Museum, London, UK; Universidad de la República, Montevideo, Uruguay; George Washington University, Washington DC, USA.

The research was jointly funded by the Australian Research Council, BGI-Shenzhen and the National Health and Medical Research Council.


Story Source:

The above story is based on materials provided by University of Melbourne. Note: Materials may be edited for content and length.


Journal Reference:

  1. Neil D Young, Aaron R Jex, Bo Li, Shiping Liu, Linfeng Yang, Zijun Xiong, Yingrui Li, Cinzia Cantacessi, Ross S Hall, Xun Xu, Fangyuan Chen, Xuan Wu, Adhemar Zerlotini, Guilherme Oliveira, Andreas Hofmann, Guojie Zhang, Xiaodong Fang, Yi Kang, Bronwyn E Campbell, Alex Loukas, Shoba Ranganathan, David Rollinson, Gabriel Rinaldi, Paul J Brindley, Huanming Yang, Jun Wang, Jian Wang, Robin B Gasser. Whole-genome sequence of Schistosoma haematobium. Nature Genetics, 2012; 44 (2): 221 DOI: 10.1038/ng.1065

Cite This Page:

University of Melbourne. "Genetic code cracked for a devastating blood parasite." ScienceDaily. ScienceDaily, 18 January 2012. <www.sciencedaily.com/releases/2012/01/120118111040.htm>.
University of Melbourne. (2012, January 18). Genetic code cracked for a devastating blood parasite. ScienceDaily. Retrieved April 1, 2015 from www.sciencedaily.com/releases/2012/01/120118111040.htm
University of Melbourne. "Genetic code cracked for a devastating blood parasite." ScienceDaily. www.sciencedaily.com/releases/2012/01/120118111040.htm (accessed April 1, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, April 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

7-Year-Old Girl Gets 3-D Printed 'robohand'

7-Year-Old Girl Gets 3-D Printed 'robohand'

AP (Mar. 31, 2015) — Although she never had much interest in prosthetic limbs before, Faith Lennox couldn&apos;t wait to slip on her new robohand. The 7-year-old, who lost part of her left arm when she was a baby, grabbed it as soon as it came off a 3-D printer. (March 31) Video provided by AP
Powered by NewsLook.com
Solitair Device Aims to Takes Guesswork out of Sun Safety

Solitair Device Aims to Takes Guesswork out of Sun Safety

Reuters - Innovations Video Online (Mar. 31, 2015) — The Solitair device aims to take the confusion out of how much sunlight we should expose our skin to. Small enough to be worn as a tie or hair clip, it monitors the user&apos;s sun exposure by taking into account their skin pigment, location and schedule. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Diné Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins