Featured Research

from universities, journals, and other organizations

Researchers' refinement increases solar concentrator efficiency

Date:
January 23, 2012
Source:
University of California, Merced
Summary:
Researchers have discovered that changing the shape of a solar concentrator significantly increases its efficiency, bringing its use closer to reality.

UC Merced researchers discovered that hollow cylindrical luminescent solar concentrators, bottom, are more efficient than traditional flat panel concentrators.
Credit: Image courtesy of University of California, Merced

A team of researchers at the University of California, Merced, has redesigned luminescent solar concentrators to be more efficient at sending sunlight to solar cells.

The advancement could be an important breakthrough for solar energy harvesting, said UC Merced physics Professor Sayantani Ghosh, who led the project.

"We tweaked the traditional flat design for luminescent solar concentrators and made them into cylinders," Ghosh said. "The results of this architectural redesign surprised us, as it significantly improves their efficiency."

The main problem preventing luminescent concentrators from being used commercially is that they have high rates of self-absorption, Ghosh said, meaning they absorb a significant amount of the light they produce instead of transporting it to the solar cells.

The research team showed the problem can be addressed by changing the shape of the concentrator. They discovered a hollow cylindrical solar concentrator is a better design compared with a flat concentrator or a solid cylinder concentrator. The hollow cylinders absorb more sunlight while having lower self-absorption losses.

Luminiscent solar concentrators are designed to absorb solar radiation over a broad range of colors and re-emit it over a narrower range (for example, only red), a process known as down-converting. This light is transported to solar cells for photocurrent generation. The quantum dots embedded in the concentrator are the materials that carry out this color conversion.

The biggest advantage they offer over traditional solar cells is that they can work even in diffuse sunlight, like on cloudy days. And because of this, they do not need to directly face the sun at all times, eliminating the need for tracking mechanisms.

Ghosh said the discovery could make commercially viable luminescent solar concentrators a reality, especially because the design enhances performance while using the same number of quantum dots, therefore without being more costly.

This saves on infrastructure costs and also opens up the possibility that the collectors can be integrated onto vertical surfaces like walls and windows. The next step is to develop a large array of hollow cylindrical luminescent solar concentrators and track the efficiency of the panel.

Richard Inman, Georgiy Shcherbatyuk, Dmitri Medvedko and Ajay Gopinathan are the other members of the team that conducted this research.

Inman served as the lead researcher while he was an undergraduate at UC Merced, an example of the hands-on learning opportunities available to students. He's now a graduate student at UC San Diego. Medvedko is an undergraduate student, and Shcherbatyuk is a graduate student. Gopinathan is a physics professor.


Story Source:

The above story is based on materials provided by University of California, Merced. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. H. Inman, G. V. Shcherbatyuk, D. Medvedko, A. Gopinathan, S. Ghosh. Cylindrical luminescent solar concentrators with near-infrared quantum dots. Optics Express, 2011; 19 (24): 24308 DOI: 10.1364/OE.19.024308

Cite This Page:

University of California, Merced. "Researchers' refinement increases solar concentrator efficiency." ScienceDaily. ScienceDaily, 23 January 2012. <www.sciencedaily.com/releases/2012/01/120119153042.htm>.
University of California, Merced. (2012, January 23). Researchers' refinement increases solar concentrator efficiency. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2012/01/120119153042.htm
University of California, Merced. "Researchers' refinement increases solar concentrator efficiency." ScienceDaily. www.sciencedaily.com/releases/2012/01/120119153042.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins