Featured Research

from universities, journals, and other organizations

Ultra-fast photodetector and terahertz generator

Date:
January 31, 2012
Source:
Technische Universitaet Muenchen
Summary:
Photodetectors made from graphene can process and conduct light signals as well as electric signals extremely fast. Within picoseconds the optical stimulation of graphene generates a photocurrent. Until now, none of the available methods were fast enough to measure these processes in graphene. Scientists have now developed a method to measure the temporal dynamics of this photo current. Furthermore they discovered that graphene can emit terahertz radiation.

Extremely thin, more stable than steel and widely applicable: the material graphene is full of interesting properties. As such, it is currently the shining star among the electric conductors. Photodetectors made with graphene can process and conduct both light signals and electric signals extremely fast. Upon optical stimulation, graphene generates a photocurrent within picoseconds (0.000,000,000,001 second). Until now, none of the available methods were fast enough to measure these processes in graphene.

Related Articles


Professor Alexander Holleitner and Dr. Leonhard Prechtel, scientists at the Technische Universitaet Muenchen (TUM), have now developed a method to measure the temporal dynamics of this photo current.

Graphene leaves a rather modest impression at a first sight. The material comprises nothing but carbon atoms ordered in a mono-layered "carpet." Yet, what makes graphene so fascinating for scientists is its extremely high conductivity. This property is particularly useful in the development of photodetectors. These are electronic components that can detect radiation and transform it into electrical signals.

Graphene's extremely high conductivity inspires scientists to utilize it in the design of ultra- fast photodetectors. However, until now, it was not possible to measure the optical and electronic behavior of graphene with respect to time, i.e. how long it takes between the electric stimulation of graphene and the generation of the respective photocurrent.

Alexander Holleitner and Leonhard Prechtel, scientists at the Walter Schottky Institut of the TU Muenchen and members of the Cluster of Excellence Nanosystems Initiative Munich (NIM), decided to pursue this question. The physicists first developed a method to increase the time resolution of photocurrent measurements in graphene into the picosecond range. This allowed them to detect pulses as short as a few picoseconds. (For comparison: A light beam traveling at light speed needs three picoseconds to propagate one millimeter.)

The central element of the inspected photodetectors is freely suspended graphene integrated into electrical circuits via metallic contacts. The temporal dynamics of the photocurrent were measured by means of so-called co-planar strip lines that were evaluated using a special time-resolved laser spectroscopy procedure -- the pump-probe technique. A laser pulse excites the electrons in the graphene and the dynamics of the process are monitored using a

second laser. With this technique the physicists were able to monitor precisely how the photocurrent in the graphene is generated.

At the same time, the scientists could take advantage of the new method to make a further observation: They found evidence that graphene, when optically stimulated, emits radiation in the terahertz (THz) range. This lies between infrared light and microwave radiation in the electromagnetic spectrum. The special thing about THz radiation is that it displays properties shared by both adjacent frequency ranges: It can be bundled like particle radiation, yet still penetrates matter like electromagnetic waves. This makes it ideal for material tests, for screening packages or for certain medical applications.

The research was funded by the German Research Foundation (DFG), the Excellence Cluster Nanosystems Initiative Munich and the Center for NanoScience (CeNS). Physicists from Universität Regensburg, Eidgenössische Technische Hochschule Zürich, Rice University and Shinshu University also contributed to the publication.


Story Source:

The above story is based on materials provided by Technische Universitaet Muenchen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Leonhard Prechtel, Li Song, Dieter Schuh, Pulickel Ajayan, Werner Wegscheider, Alexander W. Holleitner. Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene. Nature Communications, 2012; 3 DOI: 10.1038/ncomms1656

Cite This Page:

Technische Universitaet Muenchen. "Ultra-fast photodetector and terahertz generator." ScienceDaily. ScienceDaily, 31 January 2012. <www.sciencedaily.com/releases/2012/01/120131135747.htm>.
Technische Universitaet Muenchen. (2012, January 31). Ultra-fast photodetector and terahertz generator. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2012/01/120131135747.htm
Technische Universitaet Muenchen. "Ultra-fast photodetector and terahertz generator." ScienceDaily. www.sciencedaily.com/releases/2012/01/120131135747.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins