Featured Research

from universities, journals, and other organizations

Ultra-fast photodetector and terahertz generator

Date:
January 31, 2012
Source:
Technische Universitaet Muenchen
Summary:
Photodetectors made from graphene can process and conduct light signals as well as electric signals extremely fast. Within picoseconds the optical stimulation of graphene generates a photocurrent. Until now, none of the available methods were fast enough to measure these processes in graphene. Scientists have now developed a method to measure the temporal dynamics of this photo current. Furthermore they discovered that graphene can emit terahertz radiation.

Extremely thin, more stable than steel and widely applicable: the material graphene is full of interesting properties. As such, it is currently the shining star among the electric conductors. Photodetectors made with graphene can process and conduct both light signals and electric signals extremely fast. Upon optical stimulation, graphene generates a photocurrent within picoseconds (0.000,000,000,001 second). Until now, none of the available methods were fast enough to measure these processes in graphene.

Professor Alexander Holleitner and Dr. Leonhard Prechtel, scientists at the Technische Universitaet Muenchen (TUM), have now developed a method to measure the temporal dynamics of this photo current.

Graphene leaves a rather modest impression at a first sight. The material comprises nothing but carbon atoms ordered in a mono-layered "carpet." Yet, what makes graphene so fascinating for scientists is its extremely high conductivity. This property is particularly useful in the development of photodetectors. These are electronic components that can detect radiation and transform it into electrical signals.

Graphene's extremely high conductivity inspires scientists to utilize it in the design of ultra- fast photodetectors. However, until now, it was not possible to measure the optical and electronic behavior of graphene with respect to time, i.e. how long it takes between the electric stimulation of graphene and the generation of the respective photocurrent.

Alexander Holleitner and Leonhard Prechtel, scientists at the Walter Schottky Institut of the TU Muenchen and members of the Cluster of Excellence Nanosystems Initiative Munich (NIM), decided to pursue this question. The physicists first developed a method to increase the time resolution of photocurrent measurements in graphene into the picosecond range. This allowed them to detect pulses as short as a few picoseconds. (For comparison: A light beam traveling at light speed needs three picoseconds to propagate one millimeter.)

The central element of the inspected photodetectors is freely suspended graphene integrated into electrical circuits via metallic contacts. The temporal dynamics of the photocurrent were measured by means of so-called co-planar strip lines that were evaluated using a special time-resolved laser spectroscopy procedure -- the pump-probe technique. A laser pulse excites the electrons in the graphene and the dynamics of the process are monitored using a

second laser. With this technique the physicists were able to monitor precisely how the photocurrent in the graphene is generated.

At the same time, the scientists could take advantage of the new method to make a further observation: They found evidence that graphene, when optically stimulated, emits radiation in the terahertz (THz) range. This lies between infrared light and microwave radiation in the electromagnetic spectrum. The special thing about THz radiation is that it displays properties shared by both adjacent frequency ranges: It can be bundled like particle radiation, yet still penetrates matter like electromagnetic waves. This makes it ideal for material tests, for screening packages or for certain medical applications.

The research was funded by the German Research Foundation (DFG), the Excellence Cluster Nanosystems Initiative Munich and the Center for NanoScience (CeNS). Physicists from Universität Regensburg, Eidgenössische Technische Hochschule Zürich, Rice University and Shinshu University also contributed to the publication.


Story Source:

The above story is based on materials provided by Technische Universitaet Muenchen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Leonhard Prechtel, Li Song, Dieter Schuh, Pulickel Ajayan, Werner Wegscheider, Alexander W. Holleitner. Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene. Nature Communications, 2012; 3 DOI: 10.1038/ncomms1656

Cite This Page:

Technische Universitaet Muenchen. "Ultra-fast photodetector and terahertz generator." ScienceDaily. ScienceDaily, 31 January 2012. <www.sciencedaily.com/releases/2012/01/120131135747.htm>.
Technische Universitaet Muenchen. (2012, January 31). Ultra-fast photodetector and terahertz generator. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2012/01/120131135747.htm
Technische Universitaet Muenchen. "Ultra-fast photodetector and terahertz generator." ScienceDaily. www.sciencedaily.com/releases/2012/01/120131135747.htm (accessed April 16, 2014).

Share This



More Matter & Energy News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Ford Mustang Fetes Its 50th Atop Empire State Building

Ford Mustang Fetes Its 50th Atop Empire State Building

AFP (Apr. 16, 2014) Ford celebrated the 50th birthday of its beloved Mustang by displaying a new model of the convertible on top of the Empire State Building in New York. Duration: 00:28 Video provided by AFP
Powered by NewsLook.com
New York Auto Show Highlights Latest in Car Tech

New York Auto Show Highlights Latest in Car Tech

AP (Apr. 16, 2014) With more than 1 million visitors annually, the New York International Auto Show is one of the most important shows for the U.S. auto industry. This year's show featured the latest in high technology, and automotive bling. (April 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins