Featured Research

from universities, journals, and other organizations

Nano-oils keep the electronic devices really cool

Date:
February 1, 2012
Source:
Rice University
Summary:
Scientists have created a nano-infused oil that could greatly enhance the ability of devices as large as electrical transformers and as small as microelectronic components to shed excess heat.

Rice University postdoctoral researcher Tharangattu Narayanan, left, and graduate student Jaime Taha-Tijerina, lead authors of a new ACS Nano paper on nanoparticle-infused transformer oils, show vials of the oils they say are up to 80 percent more efficient in keeping transformers cool.
Credit: Jeff Fitlow/Rice University

Rice University scientists have created a nano-infused oil that could greatly enhance the ability of devices as large as electrical transformers and as small as microelectronic components to shed excess heat.

Related Articles


Research in the lab of Rice materials scientist Pulickel Ajayan, which appears in the American Chemical Society journal ACS Nano, could raise the efficiency of such transformer oils by as much as 80 percent in a way that is both cost-effective and environmentally friendly.

The Rice team headed by lead authors Jaime Taha-Tijerina, a graduate student, and postdoctoral researcher Tharangattu Narayanan focused their efforts on transformers for energy systems. Transformers are filled with mineral oils that cool and insulate the windings inside, which must remain separated from each other to keep voltage from leaking or shorting.

The researchers discovered that a very tiny amount of hexagonal boron nitride (h-BN) particles, two-dimensional cousins to carbon-based graphene, suspended in standard transformer oils are highly efficient at removing heat from a system.

"We don't need a large amount of h-BN," Narayanan said. "We found that 0.1 weight percentage of h-BN in transformer oil enhances it by nearly 80 percent."

"And at 0.01 weight percentage, the enhancement was around 9 percent," Taha-Tijerina said. "Even with a very low amount of material, we can enhance the fluids without compromising the electrically insulating properties."

Taha-Tijerina, who was employed by a transformer manufacturer in Mexico before coming to Rice, said others working on similar compounds are experimenting with particles of alumina, copper oxide and titanium oxide, but none of the compounds has the combination of qualities exhibited by h-BN.

Narayanan said the h-BN particles, about 600 nanometers wide and up to five atomic layers thick, disperse well in oil and, unlike highly conductive graphene, are highly resistant to electricity. With help from co-author Matteo Pasquali, a Rice professor of chemical and biomolecular engineering and of chemistry, the team determined that the oil's viscosity -- another important quality -- is minimally affected by the presence of the nanoparticle fillers.

"Our research shows that with new materials and innovative approaches, we can add enormous value to applications that exist today in industry," Ajayan, Rice's Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry. "Thermal management is a big issue in industry, but the right choice of materials is important; for transformer cooling, one needs dispersants in oils that take heat away, yet remain electrically insulating. Moreover, the two-dimensional nature of the fillers keeps them stable in oils without settling down for long periods of time."

Co-authors are Guanhui Gao, a visiting scholar in Ajayan's lab; senior Matthew Rohde; and graduate student Dmitri Tsentalovich, all of Rice.

Support for the research came from Prolec GE Internacional, Monterrey, Mexico; the National Council of Science and Technology, Mexico; Nanoholdings LLC; and the MURI program on novel, free-standing 2-D crystalline materials focusing on atomic layers of nitrides, oxides and sulfides, by the Army Research Office.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jaime Taha-Tijerina, Tharangattu N. Narayanan, Guanhui Gao, Matthew Rohde, Dmitri A. Tsentalovich, Matteo Pasquali, Pulickel M. Ajayan. Electrically Insulating Thermal Nano-Oils Using 2D Fillers. ACS Nano, 2012; 120127124801003 DOI: 10.1021/nn203862p

Cite This Page:

Rice University. "Nano-oils keep the electronic devices really cool." ScienceDaily. ScienceDaily, 1 February 2012. <www.sciencedaily.com/releases/2012/02/120201140038.htm>.
Rice University. (2012, February 1). Nano-oils keep the electronic devices really cool. ScienceDaily. Retrieved March 27, 2015 from www.sciencedaily.com/releases/2012/02/120201140038.htm
Rice University. "Nano-oils keep the electronic devices really cool." ScienceDaily. www.sciencedaily.com/releases/2012/02/120201140038.htm (accessed March 27, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, March 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Inspectors Found Faulty Work Before NYC Blast

Inspectors Found Faulty Work Before NYC Blast

AP (Mar. 27, 2015) An hour before an apparent gas explosion sent flames soaring and debris flying at a Manhattan apartment building, injuring 19 people, utility company inspectors decided the work being done there was faulty. (March 27) Video provided by AP
Powered by NewsLook.com
Facebook Building Plane-Sized Drones For Global Internet

Facebook Building Plane-Sized Drones For Global Internet

Newsy (Mar. 27, 2015) Facebook on Thursday revealed more details about its Internet-connected drone project. The drone is bigger than a 737, but lighter than a car. Video provided by Newsy
Powered by NewsLook.com
Robot Returns from International Space Station and Sets Two Guinness World Records

Robot Returns from International Space Station and Sets Two Guinness World Records

Reuters - Light News Video Online (Mar. 27, 2015) The companion robot "Kirobo" returns to earth from the International Space Station and sets two Guinness World Records. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com
Residents Witness Building Explosion, Collapse

Residents Witness Building Explosion, Collapse

AP (Mar. 26, 2015) Witnesses recount the sites and sounds of a massive explosion and subsequent building collapse in the heart of Manhattan&apos;s trendy East Village on Thursday. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins