Featured Research

from universities, journals, and other organizations

Tree rings may underestimate climate response to volcanic eruptions

Date:
February 5, 2012
Source:
Penn State
Summary:
Some climate cooling caused by past volcanic eruptions may not be evident in tree-ring reconstructions of temperature change because large enough temperature drops lead to greatly shortened or even absent growing seasons, according to climate researchers, who compared tree-ring temperature reconstructions with model simulations of past temperature changes.

The treeline on Bald Mountain in Utah.
Credit: Nation Parks Service

Some climate cooling caused by past volcanic eruptions may not be evident in tree-ring reconstructions of temperature change because large enough temperature drops lead to greatly shortened or even absent growing seasons, according to climate researchers, who compared tree-ring temperature reconstructions with model simulations of past temperature changes.

Related Articles


"We know these tree rings capture most temperature changes quite well," said Michael Mann, professor of meteorology and geosciences and director of the Penn State Earth System Science Center. "But the problem appears to be in their response to the intense short-term cooling that occurs following a very large volcanic eruption. Explosive volcanic eruptions place particulates called aerosols into the stratosphere, reflecting back some fraction of incoming sunlight and cooling the planet for several years following the eruption."

Tree rings are used as proxies for climate because trees create unique rings each year that often reflect the weather conditions that influenced the growing season that year. For reconstructing climate conditions, tree-ring researchers seek trees growing at the extremes of their growth range. Inferring temperature changes required going to locations either at the tree line caused by elevation or at the boreal tree line, the northern most place where the trees will grow.

For these trees, growth is almost entirely controlled by temperature, rather than precipitation, soil nutrients or sunlight, yielding a good proxy record of surface temperature changes.

"The problem is that these trees are so close to the threshold for growth, that if the temperature drops just a couple of degrees, there is little or no growth and a loss of sensitivity to any further cooling. In extreme cases, there may be no growth ring at all," said Mann. "If no ring was formed in a given year, that creates a further complication, introducing an error in the chronology established by counting rings back in time."

The researchers compared temperature reconstructions from actual tree-ring data with temperature estimates from climate models driven with past volcanic eruptions.

Comparing the model-simulated temperatures to the Northern Hemisphere temperatures reconstructed from tree-ring thickness, Mann, working with Jose D. Fuentes, professor of meteorology, Penn State, and Scott Rutherford, associate professor of environmental science, Roger Williams University, found the overall level of agreement to be quite good.

However, they report in the current issue of Nature Geoscience that "there is one glaring inconsistency; the response to the three largest tropical eruptions -- AD 1258/1259, 1452/1453 and the 1809+1815 double pulse of eruptions -- is sharply reduced in the reconstruction."

Following the 1258 eruption, the climate model simulations predict a drop of 3.5 degrees Fahrenheit, but the tree ring-based reconstruction shows only about a 1 degree Fahrenheit dip and the dip occurs several years too late. The other large eruptions showed the same type of discrepancy.

Using a theoretical model of tree-growth driven by the simulated temperature changes, the team determined that the cooling response recorded by the trees after a volcanic eruption was limited by biological growth effects. Any temperature drop exceeding roughly 1 degree Fahrenheit would lead to minimal tree growth and an inability of trees to record any further cooling. When growth is minimal enough, it is likely that a ring will not be detectable for that year.

The potential absence of rings in the first one to three years following eruption further degrades the temperature reconstruction. Because tree-ring information is averaged across many locations to obtain a representative estimate of northern hemisphere temperature, tree-ring records with and without missing rings for a given year are merged, leading to a smearing and reduced and delayed apparent cooling.

The researchers also noted that aerosol particles forced into the air by volcanoes block some direct sunlight causing cooling and they produce more indirect, scattered light at the surface. Trees like indirect sunlight and grow better under those conditions. However, this effect is small compared to that of lower temperatures and shorter growing seasons.

By accounting for these various effects in the tree growth model, the researchers were able to reproduce the reduced and smeared cooling seen in the actual tree-ring temperature reconstruction, including the near absence -- and delay -- of cooling following the massive 1258 eruption.

"Scientists look at the past response of the climate to natural factors like volcanoes to better understand how sensitive Earth's climate might be to the human impact of increasing greenhouse gas concentrations," said Mann. "Our findings suggest that past studies using tree-ring data to infer this sensitivity have likely underestimated it."


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Journal Reference:

  1. Michael E. Mann, Jose D. Fuentes, Scott Rutherford. Underestimation of volcanic cooling in tree-ring-based reconstructions of hemispheric temperatures. Nature Geoscience, 2012; DOI: 10.1038/ngeo1394

Cite This Page:

Penn State. "Tree rings may underestimate climate response to volcanic eruptions." ScienceDaily. ScienceDaily, 5 February 2012. <www.sciencedaily.com/releases/2012/02/120205163804.htm>.
Penn State. (2012, February 5). Tree rings may underestimate climate response to volcanic eruptions. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2012/02/120205163804.htm
Penn State. "Tree rings may underestimate climate response to volcanic eruptions." ScienceDaily. www.sciencedaily.com/releases/2012/02/120205163804.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Birds Around the World Take Flight

Birds Around the World Take Flight

Reuters - Light News Video Online (Nov. 22, 2014) An imperial eagle equipped with a camera spreads its wings over London. It's just one of the many birds making headlines in this week's "animal roundup". Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins