Featured Research

from universities, journals, and other organizations

Undoing HIV's 'invisibility cloak': Revelation of how certain compounds adhere so strongly to HIV’s coat points to a fresh therapeutic approach

Date:
February 10, 2012
Source:
RIKEN
Summary:
Drug researchers hunting for alternative ways to treat human immunodeficiency virus (HIV) infections may soon have a novel target -- its camouflage coat. HIV hides inside a cloak unusually rich in a sugar called mannose, which it uses to slip past the immune system before infecting its host's cells. Recently, however, biochemists discovered a family of chemical compounds that stick strongly to mannose. Understanding how this mechanism works could reveal a way to make drugs adhere to and kill HIV.

The compound pradimicin A disrupts the human immunodeficiency virus (HIV) by clinging to its mannose-rich coat. The mannose sits within a cavity in the pradimicin A structure (purple shading).
Credit: Copyright Yu Nakagawa (2012)

Drug researchers hunting for alternative ways to treat human immunodeficiency virus (HIV) infections may soon have a novel target -- its camouflage coat. HIV hides inside a cloak unusually rich in a sugar called mannose, which it uses to slip past the immune system before infecting its host's cells. Recently, however, biochemists discovered a family of chemical compounds that stick strongly to mannose. Understanding how this mechanism works could reveal a way to make drugs adhere to and kill HIV. Yu Nakagawa and Yukishige Ito at the RIKEN Advanced Science Institute in Wako and their colleagues from several research institutes in Japan are leading the effort: they have mapped the binding site of the mannose-binding compound pradimicin A1.

Mannose-binding compounds are particularly attractive to drug researchers thanks to their double-action anti-HIV effect. By sticking to mannose in the virus's coat, pradimicin A first freezes HIV's molecular machinery for entering and infecting its host's healthy cells. The virus responds by reducing the mannose in its coat thereby revealing itself to the immune system, which can then attack.

Unraveling just how pradimicin A recognizes mannose, however, has proven surprisingly difficult. In solution, the two components stick together in variously sized small clusters, confounding conventional analytical techniques such as solution-based nuclear magnetic resonance (NMR) and x-ray crystallography. Nakagawa, Ito and their colleagues side-stepped the clumping problem by using solid-state NMR, which allowed them analyze the compounds as solids, rather than in solution.

The research team's approach involved inserting carbon-13, a chemical label, into particular parts of the pradimicin A structure. Carbon-13 boosts the NMR signal wherever it is inserted, so the team could 'walk' around the compound and detect where it interacts most strongly with mannose.

The results revealed that pradimicin A curls up to form a cavity, within which the mannose structure sits. "Our study highlights the benefit of solid-state NMR methodology to investigate this interaction," says Nakagawa. "Solid-state NMR is, at present, the only technique to analyze such a complicated system." Flagging the potential utility of the technique, Nakagawa adds that: "Our analytical strategy might be applicable to other systems that similarly suffer from aggregation in solution."

Meanwhile, solid-state NMR can offer even more in probing mannose-pradimicin A binding, Nakagawa says. Having determined how and where pradimicin A grabs mannose, the team's next step will be to use the technique to identify the specific molecular interactions that bind the pradmicin A to this potential Achilles' heel of HIV.


Story Source:

The above story is based on materials provided by RIKEN. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yu Nakagawa, Takashi Doi, Yuichi Masuda, K. Takegoshi, Yasuhiro Igarashi, Yukishige Ito. Mapping of the Primary Mannose Binding Site of Pradimicin A. Journal of the American Chemical Society, 2011; 133 (43): 17485 DOI: 10.1021/ja207816h

Cite This Page:

RIKEN. "Undoing HIV's 'invisibility cloak': Revelation of how certain compounds adhere so strongly to HIV’s coat points to a fresh therapeutic approach." ScienceDaily. ScienceDaily, 10 February 2012. <www.sciencedaily.com/releases/2012/02/120210104745.htm>.
RIKEN. (2012, February 10). Undoing HIV's 'invisibility cloak': Revelation of how certain compounds adhere so strongly to HIV’s coat points to a fresh therapeutic approach. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2012/02/120210104745.htm
RIKEN. "Undoing HIV's 'invisibility cloak': Revelation of how certain compounds adhere so strongly to HIV’s coat points to a fresh therapeutic approach." ScienceDaily. www.sciencedaily.com/releases/2012/02/120210104745.htm (accessed September 1, 2014).

Share This




More Health & Medicine News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

Reuters - US Online Video (Aug. 30, 2014) California lawmakers pass a bill requiring universities to adopt "affirmative consent" language in their definitions of consensual sex, part of a nationwide drive to curb sexual assault on campuses. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
New Drug Could Reduce Cardiovascular Deaths

New Drug Could Reduce Cardiovascular Deaths

Newsy (Aug. 30, 2014) The new drug from Novartis could reduce cardiovascular deaths by 20 percent compared to other similar drugs. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins