Featured Research

from universities, journals, and other organizations

When nerve meets muscle, biglycan seals the deal

Date:
February 14, 2012
Source:
Brown University
Summary:
In the absence of the protein biglycan, synapses at neuromuscular junctions in mice began to break up about five weeks after birth, according to a new study. Reintroducing byglycan helped fix the loss of synaptic stability in cell culture. The research may be relevant to efforts to treat motor neuron diseases, such as amyotrophic lateral sclerosis (ALS, Lou Gherig's Disease) and spinal muscular atrophy.

Segmented synapses Synaptic structures in mice engineered to lack the protein biglycan (bottom row) appear discontinuous compared to the synaptic structures in normal mice (top).
Credit: Fallon Lab/Brown University

In the absence of the protein biglycan, synapses at neuromuscular junctions in mice began to break up about five weeks after birth, according to a new study led by Brown University researchers. Reintroducing byglycan helped fix the loss of synaptic stability in cell culture. The research may be relevant to efforts to treat motor neuron diseases, such as amyotrophic lateral sclerosis (ALS, Lou Gherig's Disease) and spinal muscular atrophy.

Related Articles


A protein that has shown early promise in preventing the loss of muscle function in mouse models of Duchenne muscular dystrophy, has been found in a new study to be a key player in the process of joining nerves to muscles.

The protein biglycan needs to be present to stabilize synapses at the neuromuscular junction after they have formed, according to research led by Brown University that appears in the Feb. 14, 2012, issue of the Journal of Neruoscience.

"What neuromuscular junctions do second-by-second is essential for our brain to control movement and they are also important for the long-term health of both muscle and motor neurons," said Justin Fallon, profesor of neuroscience at Brown University and the paper's senior author. "A treatment that sustains or supports the synapse could promote the health of motor neurons and muscle."

In previous work, Fallon, a member of the Brown Institute for Brain Science, has shown that in mice with the same genetic mutation as Duchenne patients, biglycan promotes the activity of another natural protein, utrophin, that can significantly reduce the muscle degradation that patients suffer. Utrophin essentially takes over for dystrophin, which is the protein Duchenne patients cannot produce. In 2010 Brown licensed Fallon's biglycan intellectual property to the Providence startup company Tivorsan Pharmaceuticals, which is working toward human trials of biglycan. (Last month, Tivorsan received a $1-million grant from the Muscular Dystrophy Association.)

Now Fallon's research group has found another important role for biglycan. In the new multi-institutional study, lead author Alison Amenta and a team of other scientists found that biglycan binds and helps activate and target a receptor enzyme called MuSK, which works like a foreman or master regulator over other proteins that build and stabilize the neuromuscular junction.

Mice engineered to lack biglycan developed normal junctions at first, but by five weeks after birth their synapses became much more likely to break into fragmented shadows of their former selves. In experiments the scientists saw that up to 80 percent of synapses in biglycan-lacking mice were unstable.

Biglycan-lacking mice also showed other structural defects including misaligned neurotransmitter receptors and extra folds near synapses.

"We think it is most likely that these folds are remnants of previous synaptic sites," that have since withered, the authors wrote in the paper.

Amenta, Fallon, and their team also found that in mice lacking biglycan, levels of MuSK at neuromuscular junction synapses were reduced by a factor of more than 10. In another experiment, they found that recombinant biglycan could rescue the stability of synaptic structures in model cell culture system.

Relevance to motor neuron diseases

The findings help set the stage for testing biglycan as a potential therapy in animal models of motor neuron disease, Fallon said.

"As an extracellular protein that can be delivered systemically that acts to stabilize the neuromuscular junction, we propose that biglycan could be a protein therapeutic for motor neuron diseases such as spinal muscular atrophy and amyotrophic lateral sclerosis, or ALS," Fallon said.

In addition to Fallon and Amenta, other Brown authors include Hillary Creely, Mary Lynn Mercado, Hiroki Hagiwara, Beth McKechnie and Beatrice Lechner. Other authors are Susana Rossi, Emilio Marrero and Richard Rotundo of the University of Miami; Qiang Wang and Lin Mei of the Medical College of Georgia; Rick Owens and David McQuillan of Lifecell Corp.; the late Werner Hoch of the University of Houston; and Marian Young of the National Institute of Dental and Craniofacial Research.

Several grants from the National Institutes of Health and support from the Muscular Dystrophy Association funded the research.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. R. Amenta, H. E. Creely, M. L. T. Mercado, H. Hagiwara, B. A. McKechnie, B. E. Lechner, S. G. Rossi, Q. Wang, R. T. Owens, E. Marrero, L. Mei, W. Hoch, M. F. Young, D. J. McQuillan, R. L. Rotundo, J. R. Fallon. Biglycan Is an Extracellular MuSK Binding Protein Important for Synapse Stability. Journal of Neuroscience, 2012; 32 (7): 2324 DOI: 10.1523/JNEUROSCI.4610-11.2012

Cite This Page:

Brown University. "When nerve meets muscle, biglycan seals the deal." ScienceDaily. ScienceDaily, 14 February 2012. <www.sciencedaily.com/releases/2012/02/120214215509.htm>.
Brown University. (2012, February 14). When nerve meets muscle, biglycan seals the deal. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2012/02/120214215509.htm
Brown University. "When nerve meets muscle, biglycan seals the deal." ScienceDaily. www.sciencedaily.com/releases/2012/02/120214215509.htm (accessed October 26, 2014).

Share This



More Health & Medicine News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins