Featured Research

from universities, journals, and other organizations

How cells brace themselves for starvation

Date:
February 23, 2012
Source:
Weizmann Institute of Science
Summary:
Cells that repress their "bad time" pumps when a nutrient is abundant were much more efficient at preparing for starvation and at recovering afterward than the cells that had been genetically engineered to avoid this repression.

Sugar, cholesterol, phosphates, zinc -- a healthy body is amazingly good at keeping such vital nutrients at appropriate levels within its cells. From an engineering point of view, one all-purpose model of pump on the surface of a cell should suffice to keep these levels constant: When the concentration of a nutrient, say, sugar, drops inside the cell, the pump mechanism could simply go into higher gear until the sugar levels are back to normal. Yet strangely enough, such cells let in their nutrients using two types of pump: One is active in "good times," when a particular nutrient is abundant the cell's environment; the other is a "bad-times" pump that springs into action only when the nutrient becomes scarce. Why does the cell need this dual mechanism?

A new Weizmann Institute study, reported in Science, might provide the answer. The research was conducted in the lab of Prof. Naama Barkai of the Molecular Genetics Department by postdoctoral fellow Dr. Sagi Levy and graduate student Moshe Kafri with lab technician Miri Carmi.

It had been known for a while that when the levels of phosphate or zinc drop in the surroundings of a yeast cell, the number of "bad-times" pumps on the cell surface soars up to a hundred-fold. When phosphate or zinc becomes abundant again, the "bad-times" pumps withdraw while the "good-times" pumps return to the cell surface in large numbers. In their new study, the scientists discovered that cells which repress their "bad-time" pumps when a nutrient is abundant were much more efficient at preparing for starvation and at recovering afterwards than the cells that had been genetically engineered to avoid this repression. The conclusion: The "good-times" pumps apparently serve as a signaling mechanism that warns the yeast cell of approaching starvation. Such advance warning gives the cell more time to store up on the scarce nutrient; the thorough preparation also helps the cell to start growing faster once starvation is over.

Thus, the dual-pump system appears to be part of a regulatory mechanism that allows the cell to deal effectively with fluctuations in nutrient supply. This clever mechanism offers the cell survival advantages that could not be provided by just one type of pump.

If these findings prove to be applicable to human cells, they could explain how our bodies maintain adequate levels of various nutrients in tissues and organs. Understanding the dual-pump regulation could be crucial because it might be defective in various metabolic disorders.


Story Source:

The above story is based on materials provided by Weizmann Institute of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Levy, M. Kafri, M. Carmi, N. Barkai. The Competitive Advantage of a Dual-Transporter System. Science, 2011; 334 (6061): 1408 DOI: 10.1126/science.1207154

Cite This Page:

Weizmann Institute of Science. "How cells brace themselves for starvation." ScienceDaily. ScienceDaily, 23 February 2012. <www.sciencedaily.com/releases/2012/02/120223103914.htm>.
Weizmann Institute of Science. (2012, February 23). How cells brace themselves for starvation. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2012/02/120223103914.htm
Weizmann Institute of Science. "How cells brace themselves for starvation." ScienceDaily. www.sciencedaily.com/releases/2012/02/120223103914.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins