Featured Research

from universities, journals, and other organizations

Input of iron linked to biological productivity in ancient Pacific Ocean

Date:
March 13, 2012
Source:
Boston University College of Arts & Sciences
Summary:
Scientists have found compelling evidence from marine sediment that supports the theory that iron in the Earth’s oceans has a direct impact on biological productivity, potentially affecting the amount of carbon dioxide in the atmosphere and, in turn, atmospheric temperature.

A team of researchers has just published a new paper, lead authored by Boston University Professor of Earth Sciences Richard W. Murray, that provides compelling evidence from marine sediment that supports the theory that iron in Earth's oceans has a direct impact on biological productivity, potentially affecting the amount of carbon dioxide in the atmosphere and, in turn, atmospheric temperature.

These findings have been published in the March 11, 2012 online edition of the journal Nature Geoscience.

The oceans are the world's largest inventory of reactive carbon. Over time, oceanic carbon exchanges with the atmospheric reservoir of carbon in the form of carbon dioxide (CO2). Much of the carbon present in the surface oceans is taken up by the growth of marine plants (primarily by phytoplankton) through photosynthesis. Consequently, marine biological productivity is recognized as a factor in determining the amount of atmospheric carbon dioxide at various times in Earth's history.

The magnitude of ocean biological productivity depends on the availability of key nutrients, including nitrogen, phosphorus and metals such as iron. In fact, previous research has established that biological productivity in the equatorial Pacific and the oceans around Antarctica is limited by the amount of iron, a micro-nutrient, more than by the better-known 'major' nutrients nitrogen and phosphorus.

The link between iron and marine biological productivity first gained attention more than twenty years ago with the publication of a controversial paper by the late John Martin, an oceanographer at the at the Moss Landing Marine Laboratories (California State University). Martin's "Iron Hypothesis" postulates that biological productivity could be stimulated by increasing the amount of iron in the ocean, which in turn would draw down atmospheric carbon dioxide. He further argued that this process contributed to ancient ice ages: When Earth was drier and therefore dustier, more iron was deposited in the oceans, thus stimulating biological productivity, reducing atmospheric carbon dioxide and cooling Earth (the inverse of global warming). This could result in prolonged glacial periods. By closely examining the sedimentary record, Murray and his colleagues have established a clear relationship between plant plankton (diatoms) and the input of iron, exactly as Martin predicted.

Many researchers since Martin have established that the availability of iron in the modern ocean determines the amount of biological production in high-nutrient, low-chlorophyll regions and may be important in lower-nutrient settings as well. By examining the paleo-oceanographic record of iron input and the deposition of diatoms, Murray and his colleagues found that the ancient system is highly consistent with what occurs in the oceans today.

The new publication provides an important sedimentary record from the high-nutrient, low-chlorophyll region of the equatorial Pacific Ocean, and shows strong links between iron input and the export and burial of biogenic silica (opal produced from diatoms) over the past million years. Although the direct relationship to climate remains unclear, data collected by the team demonstrate that iron accumulation is more closely tied to the accumulation of opal than any other biogenic component, and that high iron input closely correlates with substantially increased opal sedimentation. The strong links between iron and opal accumulation in the past are in agreement with the modern biogeochemical behavior of iron and silica, and the response of the diatom community to their mutual availability, all of which supports Martin's postulate of a biological response to iron delivery over long timescales.

The co-authors of this study are Margaret Leinen, Executive Director, Harbor Branch Oceanographic Institution and Associate Provost for Marine and Environmental Initiatives, Florida Atlantic University, and Christopher W. Knowlton, Graduate School of Oceanography, University of Rhode Island, Narragansett. Murray first began working on these research ideas while a post-doctoral researcher in Leinen's laboratory at the University of Rhode Island in the 1990's, and Knowlton is a former graduate student of Leinen's who studied the opal distribution in these sediments.


Story Source:

The above story is based on materials provided by Boston University College of Arts & Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Richard W. Murray, Margaret Leinen, Christopher W. Knowlton. Links between iron input and opal deposition in the Pleistocene equatorial Pacific Ocean. Nature Geoscience, 2012; DOI: 10.1038/NGEO1422

Cite This Page:

Boston University College of Arts & Sciences. "Input of iron linked to biological productivity in ancient Pacific Ocean." ScienceDaily. ScienceDaily, 13 March 2012. <www.sciencedaily.com/releases/2012/03/120313140434.htm>.
Boston University College of Arts & Sciences. (2012, March 13). Input of iron linked to biological productivity in ancient Pacific Ocean. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2012/03/120313140434.htm
Boston University College of Arts & Sciences. "Input of iron linked to biological productivity in ancient Pacific Ocean." ScienceDaily. www.sciencedaily.com/releases/2012/03/120313140434.htm (accessed September 22, 2014).

Share This



More Earth & Climate News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will Climate Rallies Spur Change?

Will Climate Rallies Spur Change?

Newsy (Sep. 21, 2014) Organizers of the People's Climate March and other rallies taking place in 166 countries hope to move U.N. officials to action ahead of their summit. Video provided by Newsy
Powered by NewsLook.com
Thousands March in NYC Over Climate Change

Thousands March in NYC Over Climate Change

AP (Sep. 21, 2014) Accompanied by drumbeats, wearing costumes and carrying signs, thousands of demonstrators filled the streets of Manhattan and other cities around the world on Sunday to urge policy makers to take action on climate change. (Sept. 21) Video provided by AP
Powered by NewsLook.com
Climate Change Rally Held in India Ahead of UN Summit

Climate Change Rally Held in India Ahead of UN Summit

AFP (Sep. 20, 2014) Some 125 world leaders are expected to commit to action on climate change at a UN summit Tuesday called to inject momentum in struggling efforts to tackle global warming. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins