Featured Research

from universities, journals, and other organizations

Microbiologists can now measure extremely slow life, deep ocean study shows

Date:
March 19, 2012
Source:
Aarhus University
Summary:
Microbiologists have developed a new method for measuring the very slow metabolism of bacteria deep down in the seabed. The results can provide knowledge about the global carbon cycle and its long-term impact on the climate.

‘The Pacific driller’ was the nickname given to Associate Professor of Microbiology Bente Lomstein when she took part in the Galathea 3 expedition. Here she and her colleague Alice Thoft Langerhuus examine a fresh mud core sample from the Bay of Aarhus on board Tyra, Aarhus University’s research vessel.
Credit: Jesper Rais/AU Communication

Microbiologists at Aarhus University have developed a new method for measuring slow life deep down in the seabed. The results can provide knowledge about the global carbon cycle and its long-term impact on the climate.

"Mud samples boiled in acid sounds like witchcraft," admits microbiologist Bente Lomstein from the Department of Bioscience when explaining how she and an international group of researchers achieved the outstanding results recently published in the journal Nature.

Bacteria are the only living organisms to produce D-amino acids that deposit a chemical signature in the mud in which they live. Researchers at the Department of Bioscience and the Danish National Research Foundation's Center for Geomicrobiology at Aarhus University have used this knowledge together with American researchers to develop a method to calculate the activity level of microorganisms in the deepest layers of the seabed.

Metabolism in slow motion

Why should we worry about the small organisms that live hidden below the seabed of the world's oceans? Because the slowly growing bacteria are important for the global storage of organic carbon and thereby for the oxygen content of the atmosphere.

"Seventy per cent of our planet is covered by ocean, which means that seventy per cent of the planet is made up of seabed consisting of sediments that store old organic matter. In some places the deposits are more than one hundred metres thick, and ten to thirty per cent of the total living biomass on Earth is actually found in the mud in the seabed. The bacteria in the seabed convert the carbon of organic matter to CO2, and if we add it all up, the metabolism down there plays a crucial role in the global carbon cycle, even if it happens very slowly," says Associate Professor Lomstein.

The researchers' results show that the metabolism of organic carbon takes place at a much slower rate in the deep seabed compared with all other known ecosystems. The mean generation time of bacterial cells down there is correspondingly long: 1000-3000 years. In comparison, many of the bacteria that have been studied in the laboratory or in nature reproduce in a number of hours.

Life in extreme environments

"Extremely high pressure, total darkness and very little nutrition -- those are the conditions under which microorganisms live on the seabed. At the bottom of the deep oceans, the pressure reaches several hundred atmospheres," explains Alice Thoft Langerhuus, one of the researchers behind the results.

The researchers also have an idea about how the bacteria can survive under such extreme conditions. They actually succeeded for the first time in demonstrating that there are just as many dormant cells as there are active ones. To a great extent, the bacteria therefore choose to form endospores, which have a solid 'shell' to protect themselves against the harsh environment.

The researchers combined organic biogeochemistry with microbiological studies, and their interdisciplinary model can also provide information about life in other extreme ecosystems. "Our knowledge can be used in ancient environments with extremely low biological activity, such as permafrost soil. The method is particularly useful for detecting life in the most inactive environments," says Bente Lomstein.


Story Source:

The above story is based on materials provided by Aarhus University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bente Aa. Lomstein, Alice T. Langerhuus, Steven D’Hondt, Bo B. Jψrgensen, Arthur J. Spivack. Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment. Nature, 2012; DOI: 10.1038/nature10905

Cite This Page:

Aarhus University. "Microbiologists can now measure extremely slow life, deep ocean study shows." ScienceDaily. ScienceDaily, 19 March 2012. <www.sciencedaily.com/releases/2012/03/120319111737.htm>.
Aarhus University. (2012, March 19). Microbiologists can now measure extremely slow life, deep ocean study shows. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2012/03/120319111737.htm
Aarhus University. "Microbiologists can now measure extremely slow life, deep ocean study shows." ScienceDaily. www.sciencedaily.com/releases/2012/03/120319111737.htm (accessed October 1, 2014).

Share This



More Plants & Animals News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) — Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com
Cultural Learning In Wild Chimps Observed For The First Time

Cultural Learning In Wild Chimps Observed For The First Time

Newsy (Oct. 1, 2014) — Cultural transmission — the passing of knowledge from one animal to another — has been caught on camera with chimps teaching other chimps. Video provided by Newsy
Powered by NewsLook.com
Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) — A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Annual Dog Surfing Competition Draws California Crowds

Annual Dog Surfing Competition Draws California Crowds

AFP (Sep. 30, 2014) — The best canine surfers gathered for Huntington Beach's annual dog surfing competition, "Surf City, Surf Dog." Duration: 01:15 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins