Featured Research

from universities, journals, and other organizations

Unexpected behaviour of microdroplets

Date:
March 30, 2012
Source:
Institute of Physical Chemistry of the Polish Academy of Sciences
Summary:
Physicists agree that laminar flow of liquids has been well understood and described in detail from the theoretical point of view. Researchers have, however, observed that droplets of chemical substances flowing in a carrier liquid inside microchannels -- although presenting laminar flow inside them -- present multiple mysteries.

A droplet of a chemical compound (red) translating along a rectangular microchannel does not occupy the entire microchannel cross section. The carrier liquid (blue) can bypass the droplet in corner areas of the channel. The sections below show a droplet along the channel axis and perpendicularly to the axis, visualising the changes in swirl distribution inside the droplets with increasing flow rate of the carrier liquid.
Credit: IPC PAS

Physicists agree that laminar flow of liquids has been well understood and described in detail from the theoretical point of view. Researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw have, however, observed that droplets of chemical substances flowing in a carrier liquid inside microchannels -- although presenting laminar flow inside them -- present ultiple mysteries.

Researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw discovered a new phenomenon related to the fluid dynamics. It occurs when minute droplets translate through microfluidic channels. "The effect observed by our group is related to changes in swirls inside microdroplets and as yet has not been predicted by existing theoretical models," says Dr Sławomir Jakieła from the IPC PAS. The results of the research pursued thanks to a TEAM grant from the Foundation for Polish Science, have just been published in the journal Physical Review Letters.

Microfluidic systems are miniature chemical reactors of a credit card in size, or even less. Inside these systems, microchannels with diameters of tenths or hundredths of a milimeter provide a path for laminar flow of a carrier fluid (commonly oil) with floating microdroplets of appropriate chemical compounds.

"Using a single microfluidic system, even today one can carry out as much as a few tens of thousands of different chemical reactions a day. In future, these systems will become for chemistry what integrated circuits turned out to be for electronics. Yet before we build chemical devices as revolutionary as silicon microprocessors, we have to reach a comprehensive understanding of all physical phenomena occurring in flows of microdroplets," continues Dr Jakieła.

The flows that we experience at the macroscale are often dominated by inertia and turbulences. With small volumes that are typical for microfluidic systems, the flow of a liquid is laminar and subject to viscosity-related effects.

The speed of oil flowing in microchannels is not uniform. The layers close to the walls move with the lowest speed, whereas those near the middle of a channel -- with the highest speed. "If a microdroplet is distinctly smaller than the channel diameter, it can find a place in the middle part of the flow, reaching the speed even twice as high as the average oil speed. This is nothing surprising. Similar effect can be observed for instance in rivers: the current near the banks is much slower than in the middle of the river," explains Sylwia Makulska, a PhD student at the IPC PAS.

If a sufficiently large droplet flows in a circular channel, it occupies almost the entire lumen of the channel. The droplet speed is then almost identical as that of the oil flow. The situation gets much more interesting when the droplet translates in rectangular channels that are typical to microfluidic systems. Due to interfacial tension the cross-section of a microdroplet remains rounded leaving the corners of the channel free for the flow of oil.

The team from the IPC PAS produced microdroplets from aqueous solutions of glycerine of different concentrations, and therefore of different viscosities. They translated in oil (hexadecane) through a 10 cm long rectangular channel. The researchers measured the speed of microdroplets relative to the oil as a function of their volume (length in a microchannel), droplet and oil viscosities and the flow speed of the carrier liquid.

When the viscosity of microdroplets was less than or comparable to that of the carrier liquid, their speed relative to the oil turned out to decrease with increasing droplet length, but in a certain range only. The droplets were translating with the lowest speed when their length was two, three times greater than the channel width. "Every time we observed the minimum speed relative to oil. Everything seemed to be in line with what the theoreticians would expect," says Jakieła.

But what was really interesting were things that happened when the researchers started to change the rate of oil flow. It turned out that the minimum of the droplet speed relative to oil was disappearing with increasing flow rate. Further increase in the oil flow rate resulted, however, in reappearance of the minimum -- but this time deeper and wider. "To make the long story short: we discovered that, depending on the oil flow rate, a droplet of specific length can translate under some conditions faster and under other conditions slower relative to oil," concludes Jakieła.

To find out what is the reason for the surprising behaviour of the droplets, the researchers from the IPC PAS introduced to microdroplets fluorescent markers of a few micrometers in size. When the droplets were moving along the microchannel, they were irradiated with laser light to excite fluorescence of the markers, which allowed for observation of fluid movements inside the droplets.

The measurements revealed that the distribution of swirls inside a droplet changes with increasing flow rate of the carrier liquid. "We expected changes, but the existing theories suggested that the number of swirls in microdroplets decreases with increasing oil flow rate. We observed, meanwhile, an opposite phenomenon: the faster was the oil flow, the more swirls were in a droplet. The Nature played again a trick on theoreticians," sums up Prof. Piotr Garstecki (IPC PAS).

At the Institute of Physical Chemistry PAS a work has started to make use of the new phenomenon in processes related to mixing the contents of microdroplets in microfluidic systems.


Story Source:

The above story is based on materials provided by Institute of Physical Chemistry of the Polish Academy of Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Slawomir Jakiela, Piotr Korczyk, Sylwia Makulska, Olgierd Cybulski, Piotr Garstecki. Discontinuous Transition in a Laminar Fluid Flow: A Change of Flow Topology inside a Droplet Moving in a Micron-Size Channel. Physical Review Letters, 2012; 108 (13) DOI: 10.1103/PhysRevLett.108.134501

Cite This Page:

Institute of Physical Chemistry of the Polish Academy of Sciences. "Unexpected behaviour of microdroplets." ScienceDaily. ScienceDaily, 30 March 2012. <www.sciencedaily.com/releases/2012/03/120330081350.htm>.
Institute of Physical Chemistry of the Polish Academy of Sciences. (2012, March 30). Unexpected behaviour of microdroplets. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2012/03/120330081350.htm
Institute of Physical Chemistry of the Polish Academy of Sciences. "Unexpected behaviour of microdroplets." ScienceDaily. www.sciencedaily.com/releases/2012/03/120330081350.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins