Featured Research

from universities, journals, and other organizations

Antibody therapy prevents gastrointestinal damage following radiation exposure in mice

Date:
April 4, 2012
Source:
Memorial Sloan-Kettering Cancer Center
Summary:
A new study offers the first evidence of a drug capable of preventing lethal damage to the gastrointestinal (GI) tract caused by exposure to high levels of ionizing radiation, such as those occurring during a nuclear incident. There are currently no FDA-approved treatments or prophylactics available to manage the condition, known as radiation gastrointestinal syndrome (RGS), which is associated with weight loss, vomiting, diarrhea, dehydration, systemic infection, and -- in extreme cases -- septic shock and death.

A new study offers the first evidence of a drug capable of preventing lethal damage to the gastrointestinal (GI) tract caused by exposure to high levels of ionizing radiation, such as those occurring during a nuclear incident. There are currently no FDA-approved treatments or prophylactics available to manage the condition, known as radiation gastrointestinal syndrome (RGS), which is associated with weight loss, vomiting, diarrhea, dehydration, systemic infection, and -- in extreme cases -- septic shock and death.

Related Articles


The research was conducted in mice by investigators at Memorial Sloan-Kettering Cancer Center and The University of Texas MD Anderson Cancer Center and will be published in the May 2012 issue of The Journal of Clinical Investigation.

The GI system is maintained through the continuous infusion of epithelial cells produced by specialized stem cells located in gland-like structures called crypts found in the epithelial lining of the small intestines and colon. High-dose irradiation kills these stem cells and destroys the protective epithelial barrier, or mucosa, resulting in onset of RGS within days of exposure.

According to the study, administration of a drug called 2A2 anti-ceramide antibody inhibited cell death (apoptosis) in blood vessels within the GI tract and improved 90-day survival from 0 percent to 80 percent among mice exposed to 15 Gy whole-body irradiation.

"We discovered that using this monoclonal antibody to inhibit blood vessel damage and dysfunction led to a dose-dependent increase in the number of surviving stem cells, which are highly active and responsible for repopulation of the damaged GI epithelium," said the study's corresponding author Richard N. Kolesnick, MD, a member of Memorial Sloan-Kettering's Molecular Pharmacology and Chemistry Program whose laboratory conducted the research experiments.

Developed by investigators at MD Anderson, the drug works by interfering with ceramide -- a lipid molecule that plays a role in apoptosis -- generated on the surface of the endothelial cells that make up the smallest blood vessels of a tumor.

The US Department of Health and Human Services has placed significant emphasis on the development and deployment of new therapies and countermeasures to protect first responders, military personnel, and others who are required to enter into areas of potential radiation contamination. Dr. Kolesnick and colleagues are working to develop anti-ceramide antibody as an agent used not only to protect against the damaging effects of radiation prior to exposure, but also to mitigate those effects after exposure.

The study was supported by the National Institutes of Health; Memorial Sloan-Kettering's Experimental Therapeutics Center, funded by William H. Goodwin and Alice Goodwin; the Virginia and D. K. Ludwig Fund for Cancer Research; AngelWorks; the Gilson-Longenbaugh Foundation; and the Marcus Foundation.


Story Source:

The above story is based on materials provided by Memorial Sloan-Kettering Cancer Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jimmy Rotolo, Branka Stancevic, Jianjun Zhang, Guoqiang Hua, John Fuller, Xianglei Yin, Adriana Haimovitz-Friedman, Kisu Kim, Ming Qian, Marina Cardσ-Vila, Zvi Fuks, Renata Pasqualini, Wadih Arap, Richard Kolesnick. Anti-ceramide antibody prevents the radiation gastrointestinal syndrome in mice. Journal of Clinical Investigation, 2012; DOI: 10.1172/JCI59920

Cite This Page:

Memorial Sloan-Kettering Cancer Center. "Antibody therapy prevents gastrointestinal damage following radiation exposure in mice." ScienceDaily. ScienceDaily, 4 April 2012. <www.sciencedaily.com/releases/2012/04/120404161841.htm>.
Memorial Sloan-Kettering Cancer Center. (2012, April 4). Antibody therapy prevents gastrointestinal damage following radiation exposure in mice. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2012/04/120404161841.htm
Memorial Sloan-Kettering Cancer Center. "Antibody therapy prevents gastrointestinal damage following radiation exposure in mice." ScienceDaily. www.sciencedaily.com/releases/2012/04/120404161841.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How To: Mixed Green Salad Topped With Camembert Cheese

How To: Mixed Green Salad Topped With Camembert Cheese

Rumble (Jan. 26, 2015) — Learn how to make a mixed green salad topped with a pan-seared camembert cheese in only a minute! Music: Courtesy of Audio Network. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) — Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Husky Puppy Plays With Ferret

Husky Puppy Plays With Ferret

Rumble (Jan. 26, 2015) — It looks like this 2-month-old Husky puppy and the family ferret are going to be the best of friends. Look at how much fun they&apos;re having together! Credit to &apos;Vira&apos;. Video provided by Rumble
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) — Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins