Featured Research

from universities, journals, and other organizations

Long-term studies detect effects of disappearing snow and ice

Date:
April 6, 2012
Source:
American Institute of Biological Sciences
Summary:
Regions of the earth where water is frozen for at least a month each year are shrinking as a result of global warming. Some of the effects on ecosystems are now being revealed through research conducted at affected sites over decades. They include dislocations of the relationships between predators and their prey, as well as changes in the movement through ecosystems of carbon and nutrients. The changes interact in complex ways that are not currently well understood, but effects on human populations are becoming apparent.

Scientists from the California Current Ecosystem LTER site launch a zooplankton monitoring instrument.
Credit: McOwiti O. Thomas

Regions of Earth where water is frozen for at least a month each year are shrinking as a result of global warming. Some of the effects on ecosystems are now being revealed through research conducted at affected sites over decades. They include dislocations of the relationships between predators and their prey, as well as changes in the movement through ecosystems of carbon and nutrients. The changes interact in complex ways that are not currently well understood, but effects on human populations are becoming apparent.

Related Articles


Ecosystems are changing worldwide as a result of shrinking sea ice, snow, and glaciers, especially in high-latitude regions where water is frozen for at least a month each year -- the cryosphere. Scientists have already recorded how some larger animals, such as penguins and polar bears, are responding to loss of their habitat, but research is only now starting to uncover less-obvious effects of the shrinking cryosphere on organisms.

An article in the April issue of BioScience describes some impacts that are being identified through studies that track the ecology of affected sites over decades.

The article, by Andrew G. Fountain of Portland State University and five coauthors, is one of six in a special section in the issue on the Long Term Ecological Research Network. The article describes how decreasing snowfall in many areas threatens burrowing animals and makes plant roots more susceptible to injury, because snow acts as an insulator. And because microbes such as diatoms that live under sea ice are a principal source of food for krill, disappearing sea ice has led to declines in their abundance -- resulting in impacts on seabirds and mammals that feed on krill. Disappearing sea ice also seems, unexpectedly, to be decreasing the sea's uptake of carbon dioxide from the atmosphere.

On land, snowpack changes can alter an area's suitability for particular plant species, and melting permafrost affects the amount of carbon dioxide that plants and microbes take out of the atmosphere -- though in ways that change over time. Shrinking glaciers add pollutants and increased quantities of nutrients to freshwater bodies, and melting river ice pushes more detritus downstream. Disappearing ice on land and the resulting sea-level rise will have far-reaching social, economic, and geopolitical impacts, Fountain and his coauthors note. Many of these changes are now becoming evident in the ski industry, in infrastructure and coastal planning, and in tourism. Significant effects on water supplies, and consequently on agriculture, can be predicted.

Fountain and his colleagues argue that place-based, long-term, interdisciplinary research efforts such as those supported by the Long Term Ecological Research Network will be essential if researchers are to gain an adequate understanding of the complex, cascading ecosystem responses to the changing cryosphere. Other articles in the special section on the Long Term Ecological Research Network detail further notable scientific and societal contributions of this network, which had its origins in 1980 and now includes 26 sites. The achievements include contributions to the Millennium Ecosystem Assessment, to ecological manipulation experiments, to bringing decisionmakers and researchers together, and to mechanistic understanding of long-term ecological changes.


Story Source:

The above story is based on materials provided by American Institute of Biological Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. andrew G. Fountain, John L. Campbell, Edward A. G. Schuur, Sharon E. Stammerjohn, Mark W. Williams, and Hugh W. Ducklow. The Disappearing Cryosphere: Impacts and Ecosystem Responses to Rapid Cryosphere Loss. BioScience, April 2012 DOI: 10.1525/bio.2012.62.4.11

Cite This Page:

American Institute of Biological Sciences. "Long-term studies detect effects of disappearing snow and ice." ScienceDaily. ScienceDaily, 6 April 2012. <www.sciencedaily.com/releases/2012/04/120406082844.htm>.
American Institute of Biological Sciences. (2012, April 6). Long-term studies detect effects of disappearing snow and ice. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2012/04/120406082844.htm
American Institute of Biological Sciences. "Long-term studies detect effects of disappearing snow and ice." ScienceDaily. www.sciencedaily.com/releases/2012/04/120406082844.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
Ivory Trade Boom Swamps Law Efforts

Ivory Trade Boom Swamps Law Efforts

Reuters - Business Video Online (Dec. 17, 2014) Demand for ivory has claimed the lives of tens of thousands of African elephants and now a conservation report says the illegal trade is overwhelming efforts to enforce the law. Amy Pollock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins