Featured Research

from universities, journals, and other organizations

High-resolution atomic imaging of specimens in liquid by TEM using graphene liquid cell

Date:
April 9, 2012
Source:
The Korea Advanced Institute of Science and Technology (KAIST)
Summary:
Scientists have developed a technology that enables engineers to observe processes occurring in liquid media on the smallest possible scale which is less than a nanometer.

Two sheets of graphene encapsulate a platinum growth solution.
Credit: KAIST

The Korea Advanced Institute of Science and Technology (KAIST) announced that a research team from the Department of Materials Science and Engineering has developed a technology that enables scientists and engineers to observe processes occurring in liquid media on the smallest possible scale which is less than a nanometer.

Related Articles


Professor Jeong Yong Lee and Researcher Jong Min Yuk, in collaboration with Professor Paul Alivisatos's and Professor Alex Zettl's groups at the University of California, Berkeley, succeeded in making a graphene liquid cell or capsule, confining an ultra-thin liquid film between layers of graphene, for real-time and in situ imagining of nanoscale processes in fluids with atomic-level resolution by a transmission electron microscope (TEM). Their research was published in the April 6, 2012 issue of Science.

The graphene liquid cell (GLC) is composed of two sheets of graphene sandwiched to create a sealed chamber where a platinum growth solution is encapsulated in the form of a thin slice. Each graphene layer has a thickness of one carbon atom, the thinnest membrane that has ever been used to fabricate a liquid cell required for TEM.

The research team peered inside the GLC to observe the growth and dynamics of platinum nanocrystals in solution as they coalesced into a larger size, during which the graphene membrane with the encapsulated liquid remained intact. The researchers from KAIST and the UC Berkeley identified important features in the ongoing process of the nanocrystals' coalescence and their expansion through coalescence to form certain shapes by imaging the phenomena with atomic-level resolution.

Professor Lee said, "It has now become possible for scientists to observe what is happening in liquids on an atomic level under transmission electron microscopes."

Researcher Yuk, one of the first authors of the paper, explained his research work.

"This research will promote other fields of study related to materials in a fluid stage including physical, chemical, and biological phenomena at the atomic level and promises numerous applications in the future. Pending further studies on liquid microscopy, the full application of a graphene-liquid-cell (GLC) TEM to biological samples is yet to be confirmed. Nonetheless, the GLC is the most effective technique developed today to sustain the natural state of fluid samples or species suspended in the liquid for a TEM imaging."

The transmission electron microscope (TEM), first introduced in the 1930s, produces images at a significantly higher resolution than light microscopes, allowing users to examine the smallest level of physical, chemical, and biological phenomena. Observations by TEM with atomic resolution, however, have been limited to solid and/or frozen samples, and thus it has previously been impossible to study the real time fluid dynamics of liquid phases.

TEM imaging is performed in a high vacuum chamber in which a thin slice of the imaged sample is situated, and an electron beam passes through the slice to create an image. In this process, a liquid medium, unlike solid or frozen samples, evaporates, making it difficult to observe under TEM.

Attempts to produce a liquid capsule have thus far been made with electron-transparent membranes of such materials as silicon nitride or silicon oxide; such liquid capsules are relatively thick (tens to one hundred nanometers), however, resulting in poor electron transmittance with a reduced resolution of only a few nanometers. Silicon nitride is 25 nanometers thick, whereas graphene is only 0.34 nanometers.

Graphene, most commonly found in bulk graphite, is the thinnest material made out of carbon atoms. It has unique properties such as mechanical tensile strength, high flexibility, impermeability to small molecules, and high electrical conductivity. Graphene is an excellent material to hold micro- and nanoscopic objects for observation in a transmission electron microscope by minimizing scattering of the electron beam that irradiates a liquid sample while reducing charging and heating effects.


Story Source:

The above story is based on materials provided by The Korea Advanced Institute of Science and Technology (KAIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. J. M. Yuk, J. Park, P. Ercius, K. Kim, D. J. Hellebusch, M. F. Crommie, J. Y. Lee, A. Zettl, A. P. Alivisatos. High-Resolution EM of Colloidal Nanocrystal Growth Using Graphene Liquid Cells. Science, 2012; 336 (6077): 61 DOI: 10.1126/science.1217654

Cite This Page:

The Korea Advanced Institute of Science and Technology (KAIST). "High-resolution atomic imaging of specimens in liquid by TEM using graphene liquid cell." ScienceDaily. ScienceDaily, 9 April 2012. <www.sciencedaily.com/releases/2012/04/120409133751.htm>.
The Korea Advanced Institute of Science and Technology (KAIST). (2012, April 9). High-resolution atomic imaging of specimens in liquid by TEM using graphene liquid cell. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2012/04/120409133751.htm
The Korea Advanced Institute of Science and Technology (KAIST). "High-resolution atomic imaging of specimens in liquid by TEM using graphene liquid cell." ScienceDaily. www.sciencedaily.com/releases/2012/04/120409133751.htm (accessed October 31, 2014).

Share This



More Matter & Energy News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Jaguar Land Rover Opens $800 Million Factory in Britain

Jaguar Land Rover Opens $800 Million Factory in Britain

AFP (Oct. 30, 2014) British luxury car manufacturer Jaguar Land Rover opened a $800 million engine manufacturing centre in western England, creating 1,400 jobs. Duration: 00:45 Video provided by AFP
Powered by NewsLook.com
SkyCruiser Concept Claims to Solve Problem With Flying Cars

SkyCruiser Concept Claims to Solve Problem With Flying Cars

Buzz60 (Oct. 30, 2014) A start-up company called Krossblade says its SkyCruiser concept flying car solves the problem with most flying car concepts. Mara Montalbano (@maramontalbano) explains. Video provided by Buzz60
Powered by NewsLook.com
Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


First Atomic-Scale Real-Time Movies of Platinum Nanocrystal Growth in Liquids

Apr. 19, 2012 Researchers have developed a technique for encapsulating liquids of nanocrystals between layers of graphene so that chemical reactions in the liquids can be imaged with an electron microscope. With ... read more

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins