Featured Research

from universities, journals, and other organizations

Water, water everywhere – but is it essential to life? New findings could lead to better industrial enzymes

Date:
April 13, 2012
Source:
University of Bristol
Summary:
Scientists have now challenged one of the key beliefs in chemistry: that proteins are dependent on water to survive and function. The findings could eventually lead to the development of new industrial enzymes.

New research by scientists at the University of Bristol has challenged one of the key beliefs in chemistry: that proteins are dependent on water to survive and function. The team's findings, published this month in Chemical Science, could eventually lead to the development of new industrial enzymes.

Related Articles


Proteins are large organic molecules that are vital to every living thing, allowing us to convert food into energy, supply oxygen to our blood and muscles, and drive our immune systems. Since proteins evolved in a water-rich environment, it is generally thought that they are dependent on water to survive and function.

Proteins consist of one or more polypeptides -- chains of amino acids held together by peptide bonds. If a protein in water is heated to temperatures approaching the boiling point of water, these chains will lose their structure and the protein will denature (unfold).

A classic example of denaturing occurs when an egg is hard-boiled: the structures of the proteins in the egg unfold with temperature and stick together creating a solid. In the egg's case, this process cannot be reversed -- however there are many examples where cooling the protein results in refolding of the structure.

Previously, it was thought that water was essential to the refolding process, however the Bristol findings suggest this isn't necessarily the case.

Using a spectroscopic technique called circular dichroism, Dr Adam Perriman of Bristol's School of Chemistry and colleagues have shown that the oxygen-carrying protein myoglobin can refold in an environment that is almost completely devoid of water molecules.

Dr Perriman said: "We achieved this by attaching polymer molecules to the surface of the protein and then removing the water to give a viscous liquid which, when cooled from a temperature as high as 155C, refolded back to its original structure.

"We then used the Circular Dichroism beamline (B23) at Diamond Light Source, the UK's national synchrotron science facility in Oxfordshire, to track the refolding of the myoglobin structure and were astounded when we became aware of the extremely high thermal resistance of the new material."

These findings could pave the way for the development of new industrial enzymes where hyper-thermal resistance would play a crucial role, in applications ranging from biosensor development to electrochemical reduction of CO2 to liquid fuels.


Story Source:

The above story is based on materials provided by University of Bristol. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alex Brogan, Giuliano Siligardi, Rohanah Hussain, Adam Periman, Stephen Mann. Hyper-thermal stability and unprecedented re-folding of solvent-free liquid myoglobin. Chemical Science, 2012; DOI: 10.1039/C2SC20143G

Cite This Page:

University of Bristol. "Water, water everywhere – but is it essential to life? New findings could lead to better industrial enzymes." ScienceDaily. ScienceDaily, 13 April 2012. <www.sciencedaily.com/releases/2012/04/120413122206.htm>.
University of Bristol. (2012, April 13). Water, water everywhere – but is it essential to life? New findings could lead to better industrial enzymes. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2012/04/120413122206.htm
University of Bristol. "Water, water everywhere – but is it essential to life? New findings could lead to better industrial enzymes." ScienceDaily. www.sciencedaily.com/releases/2012/04/120413122206.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins