Featured Research

from universities, journals, and other organizations

Electron microscopy inspires flexoelectric theory behind 'material on the brink'

Date:
April 13, 2012
Source:
DOE/Oak Ridge National Laboratory
Summary:
Electron microscopy has led to a new theory to explain intriguing properties in a material with potential applications in capacitors and actuators.

Electron microscopy, conducted as part of the Shared Research Equipment (ShaRE) User Program at the Department of Energy's Oak Ridge National Laboratory, has led to a new theory to explain intriguing properties in a material with potential applications in capacitors and actuators.

Related Articles


A research team led by ORNL's Albina Borisevich examined thin films of bismuth samarium ferrite, known as BSFO, which exhibits unusual physical properties near its transition from one phase to another. BSFO holds potential as a lead-free substitute for lead zirconium titanate (PZT), a similar material currently used in dozens of technologies from sensors to ultrasound machines.

Materials such as BSFO and PZT are often called "materials on the brink" in reference to their enigmatic behavior, which is closely tied to the transition between two different phases. These phases are characterized by structural changes in the material that produce different electrical properties.

"The best properties of the material are found at this transition," Borisevich said. "However, there has been a lot of discussion about what exactly happens that leads to an enhancement of the material's properties."

Using scanning transmission electron microscopy, the team mapped the position of atoms in BSFO films to find what happens to the local structure at the transition between ferroelectric and antiferroelectric phases. The team's results are published in Nature Communications.

"We discovered that neither of the two dominant theories could describe the observed behavior at the atomic scale," Borisevich said.

Some theorists have proposed that the material forms a nanocomposite at the transition. In this case, the energy of the boundaries between phases would have to approach zero, but Borisevich's team found experimentally something entirely different: the boundary's energy was instead effectively negative.

"When the energy of boundary is negative, it means that the system wants to have as many boundaries as possible, but with atom sizes being finite, you can't increase it to infinity," Borisevich said. "So you have to stop at some short-period modulated structure, which is what happens here."

Based on its observations, the team concluded that the mechanism behind the observed behavior was linked to a relatively weak interaction called flexoelectricity.

"Flexoelectricity means that you bend a material and it polarizes," said ORNL coauthor Sergei Kalinin. "It's a property present in most ferroelectrics. The effect itself is not necessarily very strong on macroscopic scales, but with the right conditions, which are realized in nanoscale systems, it can produce very interesting consequences."

Borisevich adds that the team's approach can be used to investigate a variety of systems with similar phase boundaries, and she emphasizes the importance of mapping out materials at the atomic scale.

"In this particular case, electron microscopy is the only way to look at very local changes because this material is a periodic structure," she said. "The decisive atomic-scale information had been missing from the discussion."

Researchers include National Academy of Sciences of Ukraine's Eugene Eliseev and Anna Morozovska; University of New South Wales's Ching-Jung Cheng and Valanoor Nagarajan; National Chiao Tung University's Jiunn-Yuan Lin and Ying-Hao Chu; and University of Maryland's Daisuke Kan and Ichiro Takeuchi.


Story Source:

The above story is based on materials provided by DOE/Oak Ridge National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. A.Y. Borisevich, E.A. Eliseev, A.N. Morozovska, C.-J. Cheng, J.-Y. Lin, Y.H. Chu, D. Kan, I. Takeuchi, V. Nagarajan, S.V. Kalinin. Atomic-scale evolution of modulated phases at the ferroelectric–antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction. Nature Communications, 2012; 3: 775 DOI: 10.1038/ncomms1778

Cite This Page:

DOE/Oak Ridge National Laboratory. "Electron microscopy inspires flexoelectric theory behind 'material on the brink'." ScienceDaily. ScienceDaily, 13 April 2012. <www.sciencedaily.com/releases/2012/04/120413145307.htm>.
DOE/Oak Ridge National Laboratory. (2012, April 13). Electron microscopy inspires flexoelectric theory behind 'material on the brink'. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2012/04/120413145307.htm
DOE/Oak Ridge National Laboratory. "Electron microscopy inspires flexoelectric theory behind 'material on the brink'." ScienceDaily. www.sciencedaily.com/releases/2012/04/120413145307.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
British 'Bio-Bus' Is Powered By Human Waste

British 'Bio-Bus' Is Powered By Human Waste

Buzz60 (Nov. 21, 2014) British company GENeco debuted what its calling the Bio-Bus, a bus fueled entirely by biomethane gas produced from food scraps and sewage. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins