Featured Research

from universities, journals, and other organizations

Electron microscopy inspires flexoelectric theory behind 'material on the brink'

Date:
April 13, 2012
Source:
DOE/Oak Ridge National Laboratory
Summary:
Electron microscopy has led to a new theory to explain intriguing properties in a material with potential applications in capacitors and actuators.

Electron microscopy, conducted as part of the Shared Research Equipment (ShaRE) User Program at the Department of Energy's Oak Ridge National Laboratory, has led to a new theory to explain intriguing properties in a material with potential applications in capacitors and actuators.

A research team led by ORNL's Albina Borisevich examined thin films of bismuth samarium ferrite, known as BSFO, which exhibits unusual physical properties near its transition from one phase to another. BSFO holds potential as a lead-free substitute for lead zirconium titanate (PZT), a similar material currently used in dozens of technologies from sensors to ultrasound machines.

Materials such as BSFO and PZT are often called "materials on the brink" in reference to their enigmatic behavior, which is closely tied to the transition between two different phases. These phases are characterized by structural changes in the material that produce different electrical properties.

"The best properties of the material are found at this transition," Borisevich said. "However, there has been a lot of discussion about what exactly happens that leads to an enhancement of the material's properties."

Using scanning transmission electron microscopy, the team mapped the position of atoms in BSFO films to find what happens to the local structure at the transition between ferroelectric and antiferroelectric phases. The team's results are published in Nature Communications.

"We discovered that neither of the two dominant theories could describe the observed behavior at the atomic scale," Borisevich said.

Some theorists have proposed that the material forms a nanocomposite at the transition. In this case, the energy of the boundaries between phases would have to approach zero, but Borisevich's team found experimentally something entirely different: the boundary's energy was instead effectively negative.

"When the energy of boundary is negative, it means that the system wants to have as many boundaries as possible, but with atom sizes being finite, you can't increase it to infinity," Borisevich said. "So you have to stop at some short-period modulated structure, which is what happens here."

Based on its observations, the team concluded that the mechanism behind the observed behavior was linked to a relatively weak interaction called flexoelectricity.

"Flexoelectricity means that you bend a material and it polarizes," said ORNL coauthor Sergei Kalinin. "It's a property present in most ferroelectrics. The effect itself is not necessarily very strong on macroscopic scales, but with the right conditions, which are realized in nanoscale systems, it can produce very interesting consequences."

Borisevich adds that the team's approach can be used to investigate a variety of systems with similar phase boundaries, and she emphasizes the importance of mapping out materials at the atomic scale.

"In this particular case, electron microscopy is the only way to look at very local changes because this material is a periodic structure," she said. "The decisive atomic-scale information had been missing from the discussion."

Researchers include National Academy of Sciences of Ukraine's Eugene Eliseev and Anna Morozovska; University of New South Wales's Ching-Jung Cheng and Valanoor Nagarajan; National Chiao Tung University's Jiunn-Yuan Lin and Ying-Hao Chu; and University of Maryland's Daisuke Kan and Ichiro Takeuchi.


Story Source:

The above story is based on materials provided by DOE/Oak Ridge National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. A.Y. Borisevich, E.A. Eliseev, A.N. Morozovska, C.-J. Cheng, J.-Y. Lin, Y.H. Chu, D. Kan, I. Takeuchi, V. Nagarajan, S.V. Kalinin. Atomic-scale evolution of modulated phases at the ferroelectric–antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction. Nature Communications, 2012; 3: 775 DOI: 10.1038/ncomms1778

Cite This Page:

DOE/Oak Ridge National Laboratory. "Electron microscopy inspires flexoelectric theory behind 'material on the brink'." ScienceDaily. ScienceDaily, 13 April 2012. <www.sciencedaily.com/releases/2012/04/120413145307.htm>.
DOE/Oak Ridge National Laboratory. (2012, April 13). Electron microscopy inspires flexoelectric theory behind 'material on the brink'. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2012/04/120413145307.htm
DOE/Oak Ridge National Laboratory. "Electron microscopy inspires flexoelectric theory behind 'material on the brink'." ScienceDaily. www.sciencedaily.com/releases/2012/04/120413145307.htm (accessed April 23, 2014).

Share This



More Matter & Energy News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com
China Falls for 4x4s at Beijing Auto Show

China Falls for 4x4s at Beijing Auto Show

AFP (Apr. 22, 2014) The urban 4x4 is the latest must-have for Chinese drivers, whose conversion to the cult of the SUV is the talking point of this year's Beijing auto show. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
Lytro Introduces 'Illum,' A Professional Light-Field Camera

Lytro Introduces 'Illum,' A Professional Light-Field Camera

Newsy (Apr. 22, 2014) The light-field photography engineers at Lytro unveiled their next innovation: a professional DSLR-like camera called "Illum." Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins