Featured Research

from universities, journals, and other organizations

Ultra lightweight construction is based on hydraulics

Date:
April 17, 2012
Source:
University of Stuttgart
Summary:
Maximum load capacity with minimal consumption of materials ­– this is how supporting structures in construction should be today. Researchers have now come a great deal closer to achieving this goal. They have constructed a wooden shell which is much thinner than anything deemed possible up to now. With a mere four centimeter thickness the shell spans a surface of over 100 square meters.

Maximum load capacity with minimal consumption of materials ­– this is how supporting structures in construction should be today. Researchers from the University of Stuttgart together with Bosch Rexroth have now come a great deal closer to achieving this goal. They have constructed a wooden shell which is much thinner than anything deemed possible up to now. With a mere four centimetre thickness the shell spans a surface of over 100 square metres.
Credit: Image courtesy of University of Stuttgart

Maximum load capacity with minimal consumption of materials ­- this is how supporting structures in construction should be today. Researchers from the University of Stuttgart together with Bosch Rexroth have now come a great deal closer to achieving this goal. They have constructed a wooden shell which is much thinner than anything deemed possible up to now. With a mere four centimetre thickness the shell spans a surface of over 100 square metres. The structure stands on Vaihingen Campus of the University of Stuttgart and was recently presented to the public for the first time. The extreme slimness of the shell becomes possible through the use of an adaptive structure.

Up to now structures have always been designed for an exact maximum stress; this type of stress, however, generally only occurs very rarely and then only for a short period. A large part of the building materials used today therefore serves these extremely seldom peak loads and is effectively seldom used. The aim of ultra lightweight structures developed at the University of Stuttgart is therefore to achieve a drastic saving of materials and a better reaction to dynamic loads through an active manipulation of the structure. In the case of the Stuttgart wooden shell this manipulation is achieved through hydraulic drives: these drives rest on the points of support of the shell and generate movements that compensate in a specific way for deformations and material stresses caused by wind, snow and other loads.

Institute for Lightweight Structures and Conceptual Design (ILEK) and Institute for System Dynamics (ISYS) of the University of Stuttgart in cooperation with Bosch Rexroth have realised an adaptive structure on a large scale for the first time. The shell made of wood is supported at four points. Three of these points can be moved individually by hydraulic cylinders and freely positioned in space. Sensors record the load status at numerous points on the structure. Targeted movements of the points of support counteract variable loads (for example through snow or wind) and thus reduce deformations and material stresses. Compared to conventional, passive structures this considerably reduces the use of materials for the shell. The load balancing takes place through a Rexroth control system which was especially developed for hydraulic drives. The core task of the control system is to implement the complex hydraulic control tasks of the shell structure. In this way the supporting structure can react to a change in the load status within milliseconds.

An active vibration dampening and the adaptation to changing loads can be applied in many areas of construction, for example in stadium roofs, in high-rise buildings, in wide-spanning faηade constructions or in bridges. The results of the research project at the University of Stuttgart thus enable a completely new construction method which not only saves resources but at the same time also considerably increases the performance of supporting structures. The active dampening of dynamic loads (for example from the effects of wind, earthquake or explosions) namely enables not only a drastic reduction in weight but furthermore also reduces material fatigue and damage to the structure.

In order to be able to actively compensate loads and vibrations, these influencing factors initially have to be precisely recorded resp. predicted; a second step would be to calculate the necessary counter-movements in real time (and likewise promptly to implement them). Researchers from the University of Stuttgart developed simulation models for this purpose, enabling an exact prediction of the behaviour of the structure. The material stress as well as the vibration behaviour under static and dynamic exposure is thereby taken into account. These simulation models serve as a basis for the development of control concepts which calculate the necessary counter movements on load and vibration compensation depending on the recorded measured values. These movements are then precisely implemented through the hydraulics.

The scientific foundations for the project were laid in recent years at ILEK and at ISYS. Bosch Rexroth supplied the active elements of the prototype. In close cooperation with the University of Stuttgart the company took over the project management, selection and design of the hydraulics as well as their commissioning. Institute for Lightweight Structures and Conceptual Design (ILEK) is a pioneer in researching adaptive systems in the field of construction; a first prototype was already created on a small scale with the Stuttgart Girder several years ago. The core competence of Institute for System Dynamics (ISYS) lies in the analysis of dynamic systems and their targeted influence. For this purpose the institute developed control structures creating coordinated movements of the structure. Bosch Rexroth is one of the world's leading specialists for drive and control technologies. The company is a partner for mobile applications, machinery applications and engineering, factory automation as well as renewable energies. As the drive & control company Bosch Rexroth develops, produces and distributes its components and systems in over 80 countries.

The project is integrated as an evaluation model in the group of researchers ‚Hybride Intelligente Konstruktionselemente', supported by Deutsche Forschungsgemeinschaft (DFG). This group of researchers brings together experts from mechanical engineering, aerospace technology, civil engineering and process engineering. Moreover, the project received scientific support from Prof. Leander Bathon (Institut fόr Baustoffe und Konstruktion of the University of RheinMain Wiesbaden) and from Prof. Uwe Heisel (Institut fόr Werkzeugmaschinen of the University of Stuttgart).


Story Source:

The above story is based on materials provided by University of Stuttgart. Note: Materials may be edited for content and length.


Cite This Page:

University of Stuttgart. "Ultra lightweight construction is based on hydraulics." ScienceDaily. ScienceDaily, 17 April 2012. <www.sciencedaily.com/releases/2012/04/120417080344.htm>.
University of Stuttgart. (2012, April 17). Ultra lightweight construction is based on hydraulics. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2012/04/120417080344.htm
University of Stuttgart. "Ultra lightweight construction is based on hydraulics." ScienceDaily. www.sciencedaily.com/releases/2012/04/120417080344.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Argentina's Tax Evaders Detected, Hunted Down by Drones

Argentina's Tax Evaders Detected, Hunted Down by Drones

AFP (Sep. 30, 2014) — Argentina doesn't only have Lionel Messi the footballer, it has now also acquired "Mesi" the drone system which monitors undeclared mansions, swimming pools and soy fields to curb tax evasion in the country. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) — More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) — CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com
This 'Invisibility Cloak' Is Simpler Than Most

This 'Invisibility Cloak' Is Simpler Than Most

Newsy (Sep. 28, 2014) — Researchers from the University of Rochester have created a type of invisibility cloak with simple focal lenses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins