Featured Research

from universities, journals, and other organizations

First description of a triple DNA helix in vacuum

Date:
April 18, 2012
Source:
Institute for Research in Biomedicine-IRB
Summary:
Scientists have managed for the first time to extract trustworthy structural information from a triple helix DNA in gas phase, that is to say in conditions in which DNA is practically in a vacuum. This research could bring the development of antigen therapy based on these DNA structures closer.

Simulation of a triple DNA helix structure side view and viewed from above.
Credit: Annalisa Arcella. IRB Barcelona

A team of researchers at the Institute for Research in Biomedicine (IRB Barcelona) and the Barcelona Supercomputing Center (BSC) have managed for the first time to extract trustworthy structural information from a triple helix DNA in gas phase, that is to say in conditions in which DNA is practically in a vacuum. This research could bring the development of antigen therapy based on these DNA structures closer.

The study appeared recently in the Journal of the American Chemical Society (JACS).

"Until now these special DNA structures were almost impossible to detect and it was not known whether they preserved structural memory in solution when they were evaporated. With this study we have characterized this structure and demonstrated that it maintains a surprising memory of its previous biological environment, aqueous solution, in which it is normally very difficult to characterize," explains Modesto Orozco, principal investigator at IRB Barcelona, senior professor at the University of Barcelona and director of Life Sciences at the BSC. Orozco's team has combined computational simulation techniques with experimental validation through mass spectrometry. This was the last structure pending to complete the atlas of classical DNA structures in gas phase, work that has taken Dr. Orozco's group more than ten years of dedication.

A step towards antigen therapy

One of the most relevant biomedical consequences of this study is that it could avail the development of the so-called antigen therapy. This therapeutic approach, which is based on DNA triple helix structures, would switch off the activity of the genes involved in a given disease. "There is still no drug based on gene therapy in the market but several are under development," explains the researcher. One of the main obstacles blocking the availability of these therapies was in the difficulty to experimentally detect these triple helix structures. "Demonstration that the structure is maintained in gas phase will allow these DNA structures to be detected more easily," affirms Dr. Orozco.

Shedding light on biological molecules

These results pave the way for the implementation of new structural resolution techniques based on the use of x-ray free-electron lasers (X-FEL). The X-FEL is a large scientific facility being built in Germany that produces intense light pulses, similar to a synchrotron. "If our calculations are correct X-FEL could be used to obtain structural data in gas phase about the behavior of a molecule in its natural biological environment and X-FEL would become a very powerful tool to resolve the structure of macromolecules," Orozco goes on to say.

Computational simulation has been performed using the supercomputer MareNostrum at the BSC while the experimental validation has been undertaken by the Mass Spectrometry Core Facility at IRB Barcelona, the Experimental Bioinformatics Lab (EBL) -a joint IRB Barcelona and BSC facility-, and with the collaboration of Valerie Gabelica's group at the University of Liθge, Belgium.


Story Source:

The above story is based on materials provided by Institute for Research in Biomedicine-IRB. Note: Materials may be edited for content and length.


Journal Reference:

  1. Annalisa Arcella, Guillem Portella, Maria Luz Ruiz, Ramon Eritja, Marta Vilaseca, Valιrie Gabelica, Modesto Orozco. Structure of Triplex DNA in the Gas Phase. Journal of the American Chemical Society, 2012; 134 (15): 6596 DOI: 10.1021/ja209786t

Cite This Page:

Institute for Research in Biomedicine-IRB. "First description of a triple DNA helix in vacuum." ScienceDaily. ScienceDaily, 18 April 2012. <www.sciencedaily.com/releases/2012/04/120418095315.htm>.
Institute for Research in Biomedicine-IRB. (2012, April 18). First description of a triple DNA helix in vacuum. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2012/04/120418095315.htm
Institute for Research in Biomedicine-IRB. "First description of a triple DNA helix in vacuum." ScienceDaily. www.sciencedaily.com/releases/2012/04/120418095315.htm (accessed July 24, 2014).

Share This




More Health & Medicine News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) — The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) — Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) — America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) — A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins