Featured Research

from universities, journals, and other organizations

Biomimetic polymer synthesis enhances structure control

Date:
May 2, 2012
Source:
University of Warwick
Summary:
A new biomimetic approach to synthesising polymers will offer unprecedented control over the final polymer structure and yield advances in nanomedicine, researchers say.

A new biomimetic approach to synthesising polymers will offer unprecedented control over the final polymer structure and yield advances in nanomedicine, researchers say.

In a University of Warwick-led study published in the journal Nature Chemistry, researchers from the UK (Prof Rachel O'Reilly, Dr Ronan McHale, and Joseph Patterson of the University of Warwick) and Australia (A/Prof Per Zetterlund of UNSW) outline a new method of polymer synthesis based on combination of segregation and templating -- a pair of natural approaches that have evolved over billions of years that direct complex biological processes.

Segregation improves biochemical control in organisms' cells by organising reactants into defined, well-regulated environments, while the transfer of genetic information is a primary function of templating, the paper states.

Professor Rachel O'Reilly from the Department of Chemistry at the University of Warwick said: "The ability to synthesise polymers with such precision and control will enable us to tailor make polymers for specific needs, with major applications in materials chemistry, nanotechnology and nanomedicine."

Polymers are large molecules comprising thousands of small molecules -- or monomers -- bonded together to form a chain-like structure.

Polymers can have different properties and functionality depending on their constituent parts, and a range of high-tech applications.

One way of growing these chains is through a process known as radical polymerisation, whereby a free radical initiates chain growth by adding to a monomer unit, generating a new radical that in turns adds to monomer, etc.

However, conventional radical polymerisation yields polymers of ill-defined structure -- they have a wide-range of molecular weights, the monomer sequence distribution along the chain is difficult to control and the length of the chain cannot be predetermined.

Professor O'Reilly said: "One of the long-standing goals in synthetic polymer chemistry is to be able to synthesize polymer of well-defined microstructure. Our approach offers much better control over molecular weight distributions, gives access to higher molecular weights, and offers potential to control tacticity and monomer sequence distribution."

This allows researchers to better control the physical and mechanical properties of the polymer, which determines its functionality, and could enable sequence-controlled polymerisation and thus controlled polymer folding, a pinnacle of polymer science.

"The overall structure in biopolymers is dictated by how the polymer chains fold -- or arrange themselves in space -- as exemplified by the DNA double helix," said Professor O'Reilly.

"To be able to mimic such behaviour it is necessary to be able to prepare polymers with very specific distributions of monomers along the chain."


Story Source:

The above story is based on materials provided by University of Warwick. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ronan McHale, Joseph P. Patterson, Per B. Zetterlund, Rachel K. O'Reilly. Biomimetic radical polymerization via cooperative assembly of segregating templates. Nature Chemistry, 2012; DOI: 10.1038/nchem.1331

Cite This Page:

University of Warwick. "Biomimetic polymer synthesis enhances structure control." ScienceDaily. ScienceDaily, 2 May 2012. <www.sciencedaily.com/releases/2012/05/120502091839.htm>.
University of Warwick. (2012, May 2). Biomimetic polymer synthesis enhances structure control. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2012/05/120502091839.htm
University of Warwick. "Biomimetic polymer synthesis enhances structure control." ScienceDaily. www.sciencedaily.com/releases/2012/05/120502091839.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com
Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Newsy (July 28, 2014) Stanford University published its findings for a "pure" lithium ion battery that could have our everyday devices and electric cars running longer. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins