Featured Research

from universities, journals, and other organizations

One supernova type, two different sources

Date:
May 7, 2012
Source:
Harvard-Smithsonian Center for Astrophysics
Summary:
The exploding stars known as Type Ia supernovae serve an important role in measuring the universe, and were used to discover the existence of dark energy. They're bright enough to see across large distances, and similar enough to act as a "standard candle" - an object of known luminosity. However, an embarrassing fact is that astronomers still don't know what star systems make Type Ia supernovae.

Tycho supernova remnant The Tycho supernova remnant is the result of a Type Ia supernova explosion. The explosion was observed by Danish astronomer Tycho Brahe in 1572. More than 400 years later, the ejecta from that explosion has expanded to fill a bubble 55 light-years across. In this image, low-energy X-rays (red) show expanding debris from the supernova explosion and high energy X-rays (blue) show the blast wave - a shell of extremely energetic electrons.
Credit: X-ray: NASA/CXC/Rutgers/K.Eriksen et al.; Optical: DSS

The exploding stars known as Type Ia supernovae serve an important role in measuring the universe, and were used to discover the existence of dark energy. They're bright enough to see across large distances, and similar enough to act as a "standard candle" -- an object of known luminosity. The 2011 Nobel Prize in Physics was awarded for the discovery of the accelerating universe using Type Ia supernovae. However, an embarrassing fact is that astronomers still don't know what star systems make Type Ia supernovae.

Two very different models explain the possible origin of Type Ia supernovae, and different studies support each model. New evidence shows that both models are correct -- some of these supernovae are created one way and some the other.

"Previous studies have produced conflicting results. The conflict disappears if both types of explosion are happening," explained Smithsonian astronomer and Clay Fellow Ryan Foley (Harvard-Smithsonian Center for Astrophysics).

Type Ia supernovae are known to originate from white dwarfs -- the dense cores of dead stars. White dwarfs are also called degenerate stars because they're supported by quantum degeneracy pressure.

In the single-degenerate model for a supernova, a white dwarf gathers material from a companion star until it reaches a tipping point where a runaway nuclear reaction begins and the star explodes. In the double-degenerate model, two white dwarfs merge and explode. Single-degenerate systems should have gas from the companion star around the supernova, while the double-degenerate systems will lack that gas.

"Just like mineral water can be with or without gas, so can supernovae," said Robert Kirshner, Clowes Professor of Astronomy at Harvard University and a co-author on the study.

Foley and his colleagues studied 23 Type Ia supernovae to look for signatures of gas around the supernovae, which should be present only in single-degenerate systems. They found that the more powerful explosions tended to come from "gassy" systems, or systems with outflows of gas. However, only a fraction of supernovae show evidence for outflows. The remainder seem to come from double-degenerate systems.

"There are definitely two kinds of environments -- with and without outflows of gas. Both are found around Type Ia supernovae," Foley said.

This finding has important implications for measurements of dark energy and the expanding universe. If two different mechanisms are at work in Type Ia supernovae, then the two types must be considered separately when calculating cosmic distances and expansion rates.

"It's like measuring the universe with a mix of yardsticks and meter sticks -- you'll get about the same answer, but not quite. To get an accurate answer, you need to separate the yardsticks from the meter sticks," Foley explained.

This study raises an interesting question -- if two different mechanisms create Type Ia supernovae, why are they homogeneous enough to serve as standard candles?

"How can supernovae coming from different systems look so similar? I don't have the answer for that," said Foley.


Story Source:

The above story is based on materials provided by Harvard-Smithsonian Center for Astrophysics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ryan J. Foley, Joshua D. Simon, Christopher R. Burns, Avishay Gal-Yam, Mario Hamuy, Robert P. Kirshner, Nidia I. Morrell, Mark M. Phillips, Gregory A. Shields, Assaf Sternberg. Linking Type Ia Supernova Progenitors and their Resulting Explosions. Astrophysical Journal, 2012 [link]

Cite This Page:

Harvard-Smithsonian Center for Astrophysics. "One supernova type, two different sources." ScienceDaily. ScienceDaily, 7 May 2012. <www.sciencedaily.com/releases/2012/05/120507141251.htm>.
Harvard-Smithsonian Center for Astrophysics. (2012, May 7). One supernova type, two different sources. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2012/05/120507141251.htm
Harvard-Smithsonian Center for Astrophysics. "One supernova type, two different sources." ScienceDaily. www.sciencedaily.com/releases/2012/05/120507141251.htm (accessed July 26, 2014).

Share This




More Space & Time News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

This Week @ NASA, July 25, 2014

This Week @ NASA, July 25, 2014

NASA (July 25, 2014) Apollo 11 celebration, Next Giant Leap anticipation, ISS astronauts appear in the House and more... Video provided by NASA
Powered by NewsLook.com
Space to Ground: Coming and Going

Space to Ground: Coming and Going

NASA (July 25, 2014) One station cargo ship leaves, another arrives, aquatic research and commercial spinoffs. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
How A Solar Flare Could Have Wrecked Earth's Electronics

How A Solar Flare Could Have Wrecked Earth's Electronics

Newsy (July 25, 2014) Researchers say if Earth had been a week earlier in its orbit around the sun, it would have taken a direct hit from a 2012 coronal mass ejection. Video provided by Newsy
Powered by NewsLook.com
Raw: ISS Cargo Ship Launches in Kazakhstan

Raw: ISS Cargo Ship Launches in Kazakhstan

AP (July 23, 2014) The Progress 56 cargo ship launched from the Baikonur Cosmodrome in Kazakhstan Wednesday. NASA says it will deliver cargo and crew supplies to the International Space Station. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Homing in on Supernova Origins

May 7, 2012 Type Ia supernovae are important stellar phenomena, used to measure the expansion of the universe. But astronomers know embarrassingly little about the stars they come from and how the explosions ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins