Featured Research

from universities, journals, and other organizations

Homing in on supernova origins

Date:
May 7, 2012
Source:
Carnegie Institution
Summary:
Type Ia supernovae are important stellar phenomena, used to measure the expansion of the universe. But astronomers know embarrassingly little about the stars they come from and how the explosions happen. New research from a team led by Harvard University and including Carnegie's Josh Simon, Chris Burns, Nidia Morrell, and Mark Phillips examined 23 Type Ia supernovae and helped identify the formation process for at least some of them.

Type Ia supernovae are important stellar phenomena, used to measure the expansion of the universe. But astronomers know embarrassingly little about the stars they come from and how the explosions happen. New research from a team led by Harvard University and including Carnegie's Josh Simon, Chris Burns, Nidia Morrell, and Mark Phillips examined 23 Type Ia supernovae and helped identify the formation process for at least some of them.

Their work will be published in The Astrophysical Journal and is available online.

Type Ia supernovae are violent stellar explosions. Observations of their brightness are used to determine distances in the universe and have shown scientists that the universe is expanding at an accelerating rate. The Nobel Prize in Physics was awarded December 10, 2011, to three astronomers for their "discovery of the accelerating expansion of the Universe through observations of distant supernovae."

Type Ia supernovae are believed to be thermonuclear explosions of a white dwarf star that's part of a binary system--two stars that are physically close together and orbit around a common center of mass. But there are two different possibilities for how Type Ia supernovae are created from this type of binary system.

In the so-called double-degenerate model, the orbit between two white dwarf stars gradually shrinks until the lighter star gets so close to its companion that it is ripped apart by tidal forces. Some of the lighter star's matter is then absorbed into the primary white dwarf, causing an explosion. In the competing single-degenerate model, the white dwarf slowly accretes mass from an ordinary, non-white dwarf star, until it reaches an ignition point.

"Previous studies have produced conflicting results. The conflict disappears if both types of explosion are happening," explained lead author Ryan Foley of the Harvard-Smithsonian Center for Astrophysics.

The research team studied 23 Type Ia supernovae to look for signatures of gas around the supernovae, which should be present only in single-degenerate systems. They found that the more powerful explosions tended to come from "gassy" systems, or systems with outflows of gas. However, only a fraction of supernovae show evidence for outflows--the remainder likely come from double-degenerate systems.

This finding has important implications for how astronomers use supernovae to measure the universe's expansion. "To maximize the accuracy of our measurements we may have to separate the two kinds of Type Ia supernovae," Simon said. "This study gives us one potential way to tell them apart."

Funding for this research was provided in part by a Clay Fellowship, the ISF, the Minerva foundations, an ARCHES award, the Lord Sieff of Brimpton Fund, a Minerva fellowship, CONICYT, the Millennium Center for Supernova Science, and the NSF

The HET is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universitat Munchen, and Georg-August-Universitat Gottingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Cite This Page:

Carnegie Institution. "Homing in on supernova origins." ScienceDaily. ScienceDaily, 7 May 2012. <www.sciencedaily.com/releases/2012/05/120507165553.htm>.
Carnegie Institution. (2012, May 7). Homing in on supernova origins. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2012/05/120507165553.htm
Carnegie Institution. "Homing in on supernova origins." ScienceDaily. www.sciencedaily.com/releases/2012/05/120507165553.htm (accessed April 19, 2014).

Share This



More Space & Time News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

A Hoax? Cosmetics Company Wants To Brighten The Moon

A Hoax? Cosmetics Company Wants To Brighten The Moon

Newsy (Apr. 19, 2014) FOREO, a Swedish cosmetics company, says it wants to brighten the moon to lower electricity costs. Video provided by Newsy
Powered by NewsLook.com
Raw: Space X Launches to Space Station

Raw: Space X Launches to Space Station

AP (Apr. 18, 2014) On it's second attempt this week, The Space X company launched Friday from Cape Canaveral to ferry supplies to the International Space Station. (April 18) Video provided by AP
Powered by NewsLook.com
Unmanned Falcon 9 Rocket Blasts Off from Cape Canaveral Air Force Station in Florida

Unmanned Falcon 9 Rocket Blasts Off from Cape Canaveral Air Force Station in Florida

Reuters - US Online Video (Apr. 18, 2014) The rocket, built and operated by Space Exploration Technologies, carries a Dragon cargo ship loaded with supplies and equipment destined for the International Space Station. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Earth's Near-Twin Found Orbiting Red Dwarf

Earth's Near-Twin Found Orbiting Red Dwarf

Newsy (Apr. 17, 2014) The newly-discovered planet is roughly the size of Earth and could have liquid water on its surface. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


One Supernova Type, Two Different Sources

May 7, 2012 The exploding stars known as Type Ia supernovae serve an important role in measuring the universe, and were used to discover the existence of dark energy. They're bright enough to see across ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins