Featured Research

from universities, journals, and other organizations

Molecular container gives drug dropouts a second chance

Date:
May 8, 2012
Source:
University of Maryland
Summary:
Chemists have designed a molecular container that can hold drug molecules and increase their solubility, in one case up to nearly 3,000 times.

Researchers created their "new class of general-purpose solubilizing agents" based on a type of compound called cucurbit[n]urils - or CB[n]. These are 'macrocyclic' molecules made up of units of bicyclic glycoluril C4H4N4O2 monomers. The n in CB[n] refers to the number of repeat units in the macrocycle. This is cucurbit[n]urils - or CB[n] n=5,6,7,8,10.
Credit: Image courtesy of University of Maryland

A cross-disciplinary team of researchers at the University of Maryland has designed a molecular container that can hold drug molecules and increase their solubility, in one case up to nearly 3000 times. Their discovery opens the possibility of rehabilitating drug candidates that were insufficiently soluble. It also offers an opportunity to improve successful drugs that could be made even better with better solubility.

Related Articles


The team's innovative findings were recently published in a study in Nature Chemistry, in which the authors note that "the solubility characteristics of 40-70 percent of new drug candidates are so poor that they cannot be formulated on their own, so new methods for increasing drug solubility are highly prized."

The Maryland scientists where able to increase the solubility of ten insoluble drugs by between 23 and 2,750 times, by forming container-drug complexes. They also show that their containers have low toxicity in human cell line and mice studies, and that the molecular containers can be built from inexpensive and readily available reagents.

"We already are working with drug companies to help them solubilize their interesting drug candidates and hope to get them interested in licensing our technology," says co-leader Volker Briken, an associate professor in the department of cell biology and molecular genetics and also a scientist in the Maryland Pathogen Research Institute.

The team, led by Briken and UMD Chemistry & Biochemistry Professor Lyle Isaacs, created their "new class of general-purpose solubilizing agents" based on a type of compound called cucurbit[n]urils -- or CB[n]. These are 'macrocyclic' molecules made up of units of bicyclic glycoluril C4H4N4O2 monomers. The n in CB[n] refers to the number of repeat units in the macrocycle.

Many previous attempts have been made to capture drug molecules within these and other synthetic cages and capsules to increase drugs' solubility, but with limited success.

Issacs and Briken say that next their team would like to increase the variety of novel acyclic CBs in order to be able to solubilize a maximal number of small chemical drug candidates, and also would like to generate CBs that can be specifically targeted -- for example to cancer cells.

Macrocycles have long been studied and used for a variety of applications such as synthetic dyes and for fabric softeners and other household products. Medical applications related to the current UMD study include cyclodextrin molecular containers currently used for the formulation of hydrophobic insoluble drugs that are on the market.

Examples of biological macrocyclic molecules are Heme, the active site in hemoglobin (the protein in blood that transports oxygen) and the chlorin ring in chlorophyll (the green photosynthetic pigment found in plants).


Story Source:

The above story is based on materials provided by University of Maryland. Note: Materials may be edited for content and length.


Journal Reference:

  1. Da Ma, Gaya Hettiarachchi, Duc Nguyen, Ben Zhang, James B. Wittenberg, Peter Y. Zavalij, Volker Briken, Lyle Isaacs. Acyclic cucurbit[n]uril molecular containers enhance the solubility and bioactivity of poorly soluble pharmaceuticals. Nature Chemistry, 2012; DOI: 10.1038/nchem.1326

Cite This Page:

University of Maryland. "Molecular container gives drug dropouts a second chance." ScienceDaily. ScienceDaily, 8 May 2012. <www.sciencedaily.com/releases/2012/05/120508152129.htm>.
University of Maryland. (2012, May 8). Molecular container gives drug dropouts a second chance. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/2012/05/120508152129.htm
University of Maryland. "Molecular container gives drug dropouts a second chance." ScienceDaily. www.sciencedaily.com/releases/2012/05/120508152129.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com
Los Angeles Police To Receive 7,000 Body Cameras

Los Angeles Police To Receive 7,000 Body Cameras

Newsy (Dec. 17, 2014) Los Angeles Mayor Eric Garcetti announced the cameras will be distributed starting Jan. 1. Video provided by Newsy
Powered by NewsLook.com
Jaguar Unveils 360 Virtual Windshield Making Car Pillars Appear Transparent

Jaguar Unveils 360 Virtual Windshield Making Car Pillars Appear Transparent

Buzz60 (Dec. 17, 2014) Jaguar unveils a virtual 360 degree windshield that may be the most futuristic automotive development yet. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Researchers Bring Player Pianos Back to Life

Researchers Bring Player Pianos Back to Life

AP (Dec. 17, 2014) Stanford University wants to unlock the secrets of the player piano. Researchers are restoring and studying self-playing pianos and the music rolls that recorded major composers performing their own work. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins