Featured Research

from universities, journals, and other organizations

Genetic mutation causing rare form of spinal muscular atrophy identified

Date:
May 10, 2012
Source:
Cedars-Sinai Medical Center
Summary:
Scientists have confirmed that mutations of a gene are responsible for some cases of a rare, inherited disease that causes progressive muscle degeneration and weakness: spinal muscular atrophy with lower extremity predominance, also known as SMA-LED.

Scientists have confirmed that mutations of a gene are responsible for some cases of a rare, inherited disease that causes progressive muscle degeneration and weakness: spinal muscular atrophy with lower extremity predominance, also known as SMA-LED.

"Typical spinal muscular atrophies begin in infancy or early childhood and are fatal, involving all motor neurons, but SMA-LED predominantly affects nerve cells controlling muscles of the legs. It is not fatal and the prognosis is good, although patients usually are moderately disabled and require assistive devices such as bracing and wheelchairs throughout their lives," said Robert H. Baloh, MD, PhD, director of Cedars-Sinai Medical Center's Neuromuscular Division and senior author of a Neurology article describing the new findings on DYNC1H1.

It is a molecule inside cells that acts as a motor to transport cellular components. Using cells cultured from patients, Baloh's group showed that the mutation disrupts this motor's function. The researchers found that some subjects with mutations had global developmental delay in addition to weakness, indicating the brain also is involved.

"Our observations suggest that a range of DYNC1H1-related disease exists in humans -- from a widespread neurodevelopmental abnormality of the central nervous system to more selective involvement of certain motor neurons, which manifests as spinal muscular atrophy," Baloh said.

He pointed out that while this molecule is responsible for some inheritable cases of spinal muscular atrophy with lower extremity predominance, the genetic mutation is absent in others. The search continues, therefore, to find other culprit genetic mutations and develop biological therapies to correct them.

"Although this is a rare form of motor neuron disease, it tells us that dynein function -- the molecular motor -- is crucial for the development and maintenance of motor neurons, which we hope will provide insight into the common form of spinal muscular atrophy and also amyotrophic lateral sclerosis," Baloh said. ALS (also known as Lou Gehrig's disease) is a progressive neurodegenerative disease that affects nerve cells in the brain and spinal cord.

Baloh, an expert in treating and studying neuromuscular and neurodegenerative diseases, joined Cedars-Sinai in early 2012, working with other physicians and scientists in the Department of Neurology and the Regenerative Medicine Institute to establish one of the most comprehensive neuromuscular disease treatment and research teams in California.

The study was supported by the BJC Institute for Clinical and Translational Sciences, the Children's Discovery Institute, the National Institutes of Health, the Hope Center for Neurological Disorders, the Muscular Dystrophy Association, the Charcot Marie Tooth Association, the Columbia University Motor Neuron Center and the Burroughs Wellcome Fund.

One of the article's other authors reports serving on the scientific advisory board of the Myositis Association; receiving revenue and speaker honoraria from Athena; owning stock in Johnson & Johnson; directing the Washington University Neuromuscular Clinical Laboratory, and receiving research support from NIH, MDA and other groups.


Story Source:

The above story is based on materials provided by Cedars-Sinai Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. B. Harms, K. M. Ori-McKenney, M. Scoto, E. P. Tuck, S. Bell, D. Ma, S. Masi, P. Allred, M. Al-Lozi, M. M. Reilly, L. J. Miller, A. Jani-Acsadi, A. Pestronk, M. E. Shy, F. Muntoni, R. B. Vallee, R. H. Baloh. Mutations in the tail domain of DYNC1H1 cause dominant spinal muscular atrophy. Neurology, 2012; DOI: 10.1212/WNL.0b013e3182556c05

Cite This Page:

Cedars-Sinai Medical Center. "Genetic mutation causing rare form of spinal muscular atrophy identified." ScienceDaily. ScienceDaily, 10 May 2012. <www.sciencedaily.com/releases/2012/05/120510113523.htm>.
Cedars-Sinai Medical Center. (2012, May 10). Genetic mutation causing rare form of spinal muscular atrophy identified. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2012/05/120510113523.htm
Cedars-Sinai Medical Center. "Genetic mutation causing rare form of spinal muscular atrophy identified." ScienceDaily. www.sciencedaily.com/releases/2012/05/120510113523.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins