Featured Research

from universities, journals, and other organizations

Marker to identify, attack breast cancer stem cells discovered

Date:
May 16, 2012
Source:
University of Texas M. D. Anderson Cancer Center
Summary:
Cell surface protein GD2 blows potent tumor-generating cells’ cover. The first single marker of breast cancer stem cells also is targetable by a drug in preclinical tests.

Breast cancer stem cells wear a cell surface protein that is part nametag and part bull's eye, identifying them as potent tumor-generating cells and flagging their vulnerability to a drug, researchers at The University of Texas MD Anderson Cancer Center report online in Journal of Clinical Investigation.

"We've discovered the first single marker for breast cancer stem cells and also found that it's targetable with a small molecule drug that inhibits an enzyme crucial to its synthesis," said co-senior author Michael Andreeff, M.D., Ph.D., professor in MD Anderson's Departments of Leukemia and Stem Cell Transplantation and Cellular Therapy.

Andreeff and colleagues are refining the drug as a potential targeted therapy for breast cancer stem cells, which are thought to be crucial to therapy resistance, disease progression and spread to other organs.

"It's been difficult to identify cancer stem cells in solid tumors," Andreeff said. "And nobody has managed to target these cells very well."

The marker is the cell surface protein ganglioside GD2. The drug is triptolide, an experimental drug that Andreeff has used in preclinical leukemia research. The team found triptolide blocks expression of GD3 synthase, which is essential to GD2production.

Triptolide stymied cancer growth in cell line experiments and resulted in smaller tumors and prolonged survival in mouse experiments. Drug development for human trials probably will take several years.

Cancer stem cells are similar to normal stem cells

Research in several types of cancer has shown cancer stem cells are a small subpopulation of cancer cells that are capable of long-term self-renewal and generation of new tumors. More recent research shows they resist treatment and promote metastasis.

Cancer stem cells are similar to normal stem cells that renew specialized tissues. The breast cancer findings grew out of Andreeff's long-term research in mesenchymal stem cells, which can divide into one copy of themselves and one differentiated copy of a bone, muscle, fat or cartilage cell.

Andreeff has shown these mobile mesenchymal stem cells home to wounds, including tumors, making them potential carriers of cancer therapy.

An important cellular transition also comes into play. Co-senior author Sendurai Mani, Ph.D., assistant professor in MD Anderson's Department of Molecular Pathology and Co-Director of the Metastasis Research Center, is an expert on epithelial-to-mesenchymal transition (EMT). About 85 percent of all solid tumors start in the lining of an organ, called the epithelium. Mani and colleagues at MIT showed that epithelial cells can be induced to take on stem cell properties by forcing them to undergo EMT.

"This change from stationary epithelial cells to the mobile mesenchymal stem cells is an important step in metastasis," Mani said.

Andreeff and Mani in 2010 discovered that human mammary epithelial cells that undergo epithelial-to-mesenchymal transition act similarly to human bone-marrow-derived mesenchymal stem cells. They can home in to wounds and differentiate into the same cell types.

GD2 separates cancer stem cells from other tumor cells

In the current project, the researchers hypothesized that the cell markers expressed on the surface of mesenchymal stem cells would also be expressed on the surface of breast cancer stem cells.

They found that GD2 expression, one such mesenchymal stem cell marker, divided the breast cancer cell lines into two distinct groups: about 4.5 percent of cells were GD2-positive and about 92.7 percent were GD2-negative.

GD2-positive breast cancer cells:

• Form twice as many mammospheres, a clumping of cells considered an indicator of tumor-forming capacity, as compared to GD2-negative cells. And the spheres were three times as large.

• Migrate four times as fast as GD2-negative cells.

• Form five times as many tumors when 10 cells of each type are transplanted into mice.

GD2-positive cells also have general cancer stem cell marker

A known combination marker of cancer stem cells is high expression of CD44 and low expression of CD24 surface proteins. The researchers found 85 percent of GD2-positive breast cancer cells were CD44 high/CD24 low, while only 1 percent of GD2-negative cells shared that characteristic.

An analysis of 12 human breast cancer tumors found an even higher correlation of 95.5 percent between GD2+ cells and CD44 high/CD24 low status.

Comparing gene expression between GD2+ cells and CD44 high/CD24 low cells revealed 100 percent correlation in the expression of 231 genes.

GD2+ cells had greater expression of genes involved in migration, invasion and epithelial-mesenchymal transition than GD2- cells. They also had a nine-fold increase in GD3 synthase, a key enzyme in the eventual synthesis of GD2.

Further experiments showed that:

• Inducing EMT raised the percentage of GD2+ cells in two breast cancer cell lines.

• Knocking down GD3 synthase cut the percentage of GD2+ cells by more than half.

• Mice injected with 1 million breast cancer cells having a small interfering RNA that blocked GD3 synthase never developed tumors even after eight weeks, while all of the control mice with active GD3S developed tumors.

Triptolide stymies tumor growth, extends survival

The researchers then used triptolide, a known inhibitor of GD3 synthase, to treat immune-deficient mice injected with breast cancer cells. Of the mice treated, 50 percent did not develop breast cancer and the other half had smaller tumors than the control mice. The treated mice also lived longer than the controls.

GD2's function in cancer stem cells remains unclear. "As GD2 is an immune suppressant, it would be needed by cancer stem cells to counter immune cells during metastases," said first author Venkata Lokesh Battula, Ph.D., of MD Anderson's Department of Leukemia. "Inhibition of GD2 expression in cancer cells may enhance the inherent ability of immune cells to kill cancer cells."

Co-authors with Andreeff,Mani and Battula are Yuexi Shi, Rui-Yu Wang, M.D., Ph.D., Erika Spaeth, Ph.D., Rodrigo Jacamo, and Frank Marini, Ph.D., all of MD Anderson's Department of Leukemia, Section of Molecular Hematology and Therapy; Kurt Evans, of the Department of Molecular Pathology; Aysegul Sahin, M.D., of the Department of Pathology; and Gabriel Hortobagyi, M.D., of the Department of Breast Medical Oncology; and Rudy Guerra, Ph.D., Rice University Department of Statistics.

This project was funded by grants from the National Cancer Institute of the National Institutes of Health, including MD Anderson's Specialized Program of Research Excellence in Breast Cancer, the MD Anderson Research Trust Fellow Award, which is funded by the George and Barbara Bush Endowment for Innovative Cancer Research, for Mani, and by the Paul and Mary Haas Chair in Genetics in honor of Amanda Marie Whittle held by Andreeff.


Story Source:

The above story is based on materials provided by University of Texas M. D. Anderson Cancer Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Venkata Lokesh Battula, Yuexi Shi, Kurt W. Evans, Rui-Yu Wang, Erika L. Spaeth, Rodrigo O. Jacamo, Rudy Guerra, Aysegul A. Sahin, Frank C. Marini, Gabriel Hortobagyi, Sendurai A. Mani, Michael Andreeff. Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. Journal of Clinical Investigation, 2012; DOI: 10.1172/JCI59735

Cite This Page:

University of Texas M. D. Anderson Cancer Center. "Marker to identify, attack breast cancer stem cells discovered." ScienceDaily. ScienceDaily, 16 May 2012. <www.sciencedaily.com/releases/2012/05/120516092712.htm>.
University of Texas M. D. Anderson Cancer Center. (2012, May 16). Marker to identify, attack breast cancer stem cells discovered. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2012/05/120516092712.htm
University of Texas M. D. Anderson Cancer Center. "Marker to identify, attack breast cancer stem cells discovered." ScienceDaily. www.sciencedaily.com/releases/2012/05/120516092712.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com
What's To Blame For Worst Ebola Outbreak In History?

What's To Blame For Worst Ebola Outbreak In History?

Newsy (July 27, 2014) A U.S. doctor has tested positive for the deadly Ebola virus, as the worst-ever outbreak continues to grow. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins