Featured Research

from universities, journals, and other organizations

Diamond used to produce graphene quantum dots and nano-ribbons of controlled structure

Date:
May 17, 2012
Source:
Kansas State University
Summary:
Researchers have come closer to solving an old challenge of producing graphene quantum dots of controlled shape and size at large densities, which could revolutionize electronics and optoelectronics.

Kansas State University researchers have come closer to solving an old challenge of producing graphene quantum dots of controlled shape and size at large densities, which could revolutionize electronics and optoelectronics.

Vikas Berry, William H. Honstead professor of chemical engineering, has developed a novel process that uses a diamond knife to cleave graphite into graphite nanoblocks, which are precursors for graphene quantum dots. These nanoblocks are then exfoliated to produce ultrasmall sheets of carbon atoms of controlled shape and size.

By controlling the size and shape, the researchers can control graphene's properties over a wide range for varied applications, such as solar cells, electronics, optical dyes, biomarkers, composites and particulate systems. Their work has been published in Nature Communications.

"The process produces large quantities of graphene quantum dots of controlled shape and size and we have conducted studies on their structural and electrical properties," Berry said.

While other researchers have been able to make quantum dots, Berry's research team can make quantum dots with a controlled structure in large quantities, which may allow these optically active quantum dots to be used in solar cell and other optoelectronic applications.

"There will be a wide range of applications of these quantum dots," Berry said. "We expect that the field of graphene quantum dots will evolve as a result of this work since this new material has a great potential in several nanotechnologies."

It has been know that because of the edge states and quantum confinement, the shape and size of graphene quantum dots dictate their electrical, optical, magnetic and chemical properties. This work also shows proof of the opening of a band-gap in graphene nanoribbon films with a reduction in width. Further, Berry's team shows through high-resolution transmission electron micrographs and simulations that the edges of the produces structures are straight and relatively smooth.


Story Source:

The above story is based on materials provided by Kansas State University. Note: Materials may be edited for content and length.


Journal References:

  1. . ,
  2. Nihar Mohanty, David Moore, Zhiping Xu, T.S. Sreeprasad, Ashvin Nagaraja, Alfredo Alexander Rodriguez, Vikas Berry. Nanotomy-based production of transferable and dispersible graphene nanostructures of controlled shape and size. Nature Communications, 2012; 3: 844 DOI: 10.1038/ncomms1834

Cite This Page:

Kansas State University. "Diamond used to produce graphene quantum dots and nano-ribbons of controlled structure." ScienceDaily. ScienceDaily, 17 May 2012. <www.sciencedaily.com/releases/2012/05/120517193141.htm>.
Kansas State University. (2012, May 17). Diamond used to produce graphene quantum dots and nano-ribbons of controlled structure. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2012/05/120517193141.htm
Kansas State University. "Diamond used to produce graphene quantum dots and nano-ribbons of controlled structure." ScienceDaily. www.sciencedaily.com/releases/2012/05/120517193141.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins