Featured Research

from universities, journals, and other organizations

Diamond used to produce graphene quantum dots and nano-ribbons of controlled structure

Date:
May 17, 2012
Source:
Kansas State University
Summary:
Researchers have come closer to solving an old challenge of producing graphene quantum dots of controlled shape and size at large densities, which could revolutionize electronics and optoelectronics.

Kansas State University researchers have come closer to solving an old challenge of producing graphene quantum dots of controlled shape and size at large densities, which could revolutionize electronics and optoelectronics.

Vikas Berry, William H. Honstead professor of chemical engineering, has developed a novel process that uses a diamond knife to cleave graphite into graphite nanoblocks, which are precursors for graphene quantum dots. These nanoblocks are then exfoliated to produce ultrasmall sheets of carbon atoms of controlled shape and size.

By controlling the size and shape, the researchers can control graphene's properties over a wide range for varied applications, such as solar cells, electronics, optical dyes, biomarkers, composites and particulate systems. Their work has been published in Nature Communications.

"The process produces large quantities of graphene quantum dots of controlled shape and size and we have conducted studies on their structural and electrical properties," Berry said.

While other researchers have been able to make quantum dots, Berry's research team can make quantum dots with a controlled structure in large quantities, which may allow these optically active quantum dots to be used in solar cell and other optoelectronic applications.

"There will be a wide range of applications of these quantum dots," Berry said. "We expect that the field of graphene quantum dots will evolve as a result of this work since this new material has a great potential in several nanotechnologies."

It has been know that because of the edge states and quantum confinement, the shape and size of graphene quantum dots dictate their electrical, optical, magnetic and chemical properties. This work also shows proof of the opening of a band-gap in graphene nanoribbon films with a reduction in width. Further, Berry's team shows through high-resolution transmission electron micrographs and simulations that the edges of the produces structures are straight and relatively smooth.


Story Source:

The above story is based on materials provided by Kansas State University. Note: Materials may be edited for content and length.


Journal References:

  1. . ,
  2. Nihar Mohanty, David Moore, Zhiping Xu, T.S. Sreeprasad, Ashvin Nagaraja, Alfredo Alexander Rodriguez, Vikas Berry. Nanotomy-based production of transferable and dispersible graphene nanostructures of controlled shape and size. Nature Communications, 2012; 3: 844 DOI: 10.1038/ncomms1834

Cite This Page:

Kansas State University. "Diamond used to produce graphene quantum dots and nano-ribbons of controlled structure." ScienceDaily. ScienceDaily, 17 May 2012. <www.sciencedaily.com/releases/2012/05/120517193141.htm>.
Kansas State University. (2012, May 17). Diamond used to produce graphene quantum dots and nano-ribbons of controlled structure. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2012/05/120517193141.htm
Kansas State University. "Diamond used to produce graphene quantum dots and nano-ribbons of controlled structure." ScienceDaily. www.sciencedaily.com/releases/2012/05/120517193141.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins