Featured Research

from universities, journals, and other organizations

Engineers use droplet microfluidics to create glucose-sensing microbeads

Date:
May 18, 2012
Source:
American Institute of Physics
Summary:
Tiny beads may act as minimally invasive glucose sensors for a variety of applications in cell culture systems and tissue engineering.

Cell cultures need glucose for energy, but too much sugar can create a diabetic-like environment in which cell proteins undergo unwanted structural changes. Standard methods to monitor glucose levels require invasive and time-consuming handling of the cell culture.

Related Articles


A team of engineers at the National University of Singapore and Singapore's Institute of Microelectronics is developing an alternative approach that takes advantage of new microfluidic techniques. In a continuous and controlled process, the researchers created small droplets of polymer that encapsulated pairs of fluorescing molecules.

These microbeads can be added to cell cultures where, in the presence of glucose, they emit a stronger fluorescent signal. The team demonstrated the glucose sensing abilities of the microbeads across the normal physiological range, as reported in the American Institute of Physics' (AIP) journal Biomicrofluidics.

"The method is simple, inexpensive, and produces glucose-sensing microbeads of different sizes," says Dieter Trau, assistant professor in the Departments of Bioengineering and Chemical & Biomolecular Engineering at the National University of Singapore. "Our work automates the process of microbead preparation onto a single narrow chip -- with minimal use of reagents. Sensing microbeads can act as small, minimally invasive glucose sensors and be optically integrated in cell culture systems to monitor glucose levels. These microbeads have the potential to detect the local glucose concentration in the microenvironment around a cell, as well as gradual changes due to cell metabolism."


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Chaitanya Kantak, Qingdi Zhu, Sebastian Beyer, Tushar Bansal, and Dieter Trau. Utilizing Microfluidics to Synthesize PEG Microbeads for FRET-based Glucose Sensing. Biomicrofluidics, 2012

Cite This Page:

American Institute of Physics. "Engineers use droplet microfluidics to create glucose-sensing microbeads." ScienceDaily. ScienceDaily, 18 May 2012. <www.sciencedaily.com/releases/2012/05/120518132657.htm>.
American Institute of Physics. (2012, May 18). Engineers use droplet microfluidics to create glucose-sensing microbeads. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2012/05/120518132657.htm
American Institute of Physics. "Engineers use droplet microfluidics to create glucose-sensing microbeads." ScienceDaily. www.sciencedaily.com/releases/2012/05/120518132657.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins