Featured Research

from universities, journals, and other organizations

Engineers use droplet microfluidics to create glucose-sensing microbeads

Date:
May 18, 2012
Source:
American Institute of Physics
Summary:
Tiny beads may act as minimally invasive glucose sensors for a variety of applications in cell culture systems and tissue engineering.

Cell cultures need glucose for energy, but too much sugar can create a diabetic-like environment in which cell proteins undergo unwanted structural changes. Standard methods to monitor glucose levels require invasive and time-consuming handling of the cell culture.

Related Articles


A team of engineers at the National University of Singapore and Singapore's Institute of Microelectronics is developing an alternative approach that takes advantage of new microfluidic techniques. In a continuous and controlled process, the researchers created small droplets of polymer that encapsulated pairs of fluorescing molecules.

These microbeads can be added to cell cultures where, in the presence of glucose, they emit a stronger fluorescent signal. The team demonstrated the glucose sensing abilities of the microbeads across the normal physiological range, as reported in the American Institute of Physics' (AIP) journal Biomicrofluidics.

"The method is simple, inexpensive, and produces glucose-sensing microbeads of different sizes," says Dieter Trau, assistant professor in the Departments of Bioengineering and Chemical & Biomolecular Engineering at the National University of Singapore. "Our work automates the process of microbead preparation onto a single narrow chip -- with minimal use of reagents. Sensing microbeads can act as small, minimally invasive glucose sensors and be optically integrated in cell culture systems to monitor glucose levels. These microbeads have the potential to detect the local glucose concentration in the microenvironment around a cell, as well as gradual changes due to cell metabolism."


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Chaitanya Kantak, Qingdi Zhu, Sebastian Beyer, Tushar Bansal, and Dieter Trau. Utilizing Microfluidics to Synthesize PEG Microbeads for FRET-based Glucose Sensing. Biomicrofluidics, 2012

Cite This Page:

American Institute of Physics. "Engineers use droplet microfluidics to create glucose-sensing microbeads." ScienceDaily. ScienceDaily, 18 May 2012. <www.sciencedaily.com/releases/2012/05/120518132657.htm>.
American Institute of Physics. (2012, May 18). Engineers use droplet microfluidics to create glucose-sensing microbeads. ScienceDaily. Retrieved April 20, 2015 from www.sciencedaily.com/releases/2012/05/120518132657.htm
American Institute of Physics. "Engineers use droplet microfluidics to create glucose-sensing microbeads." ScienceDaily. www.sciencedaily.com/releases/2012/05/120518132657.htm (accessed April 20, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, April 20, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Humanoid Robot Can Recognise and Interact With People

Humanoid Robot Can Recognise and Interact With People

Reuters - Innovations Video Online (Apr. 20, 2015) An ultra-realistic humanoid robot called &apos;Han&apos; recognises and interprets people&apos;s facial expressions and can even hold simple conversations. Developers Hanson Robotics hope androids like Han could have uses in hospitality and health care industries where face-to-face communication is vital. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Drones and Health Apps at Santiago's "Robotics Day"

Drones and Health Apps at Santiago's "Robotics Day"

AFP (Apr. 20, 2015) Latin American robotics experts gather in Santiago, Chile for "Robotics Day". Video provided by AFP
Powered by NewsLook.com
Japan Humanoid Robot Receives Customers at Department Store

Japan Humanoid Robot Receives Customers at Department Store

AFP (Apr. 20, 2015) She can smile, she can sing and she can give you guidance at one of the most upscale department stores in Tokyo...a female-looking humanoid makes her debut as a receptionist Video provided by AFP
Powered by NewsLook.com
Pee-Power Toilet to Light Up Disaster Zones

Pee-Power Toilet to Light Up Disaster Zones

Reuters - Innovations Video Online (Apr. 20, 2015) Students and staff are being asked to use a prototype urinal to &apos;donate&apos; urine to fuel microbial fuel cell (MFC) stacks that generate electricity to power lighting. The developers hope the pee-power technology will light toilet cubicles in refugee camps, where women are often at risk of assault in poorly lit sanitation areas. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins