Featured Research

from universities, journals, and other organizations

First Bose-Einstein condensate of erbium: Quantum condensate of the thirteenth kind

Date:
May 22, 2012
Source:
University of Innsbruck
Summary:
Scientists have created a condensate of the exotic element erbium. Ultracold quantum gases have exceptional properties and offer an ideal system to study basic physical phenomena. Erbuim is a very exotic element, which due to its particular properties, offers new and fascinating possibilities to investigate fundamental questions in quantum physics.

Francesca Ferlaino in the lab.
Credit: Image courtesy of University of Innsbruck

Francesca Ferlaino's research team at the University of Innsbruck is the first to successfully create a condensate of the exotic element erbium.

Ultracold quantum gases have exceptional properties and offer an ideal system to study basic physical phenomena. By choosing erbium, the research team led by Francesca Ferlaino from the Institute of Experimental Physics, University of Innsbruck, selected a very exotic element, which due to its particular properties offers new and fascinating possibilities to investigate fundamental questions in quantum physics.

"Erbium is comparatively heavy and has a strongly magnetic character. These properties lead to an extreme dipolar behavior of quantum systems," says Ferlaino. Together with her research group, she found a surprisingly simple way to deeply cool this complex element by means of laser and evaporative cooling techniques. At temperatures close to absolute zero, a cloud of about 70,000 erbium atoms forms a magnetic Bose-Einstein condensate.

In a condensate, the particles lose their individual properties and synchronize their behavior. "Experiments with erbium enable us to gain new insights into the complex interaction processes of strongly correlated systems and, in particular, they offer new starting points to study quantum magnetism with cold atoms," says Francesca Ferlaino.

"With attaining the Bose-Einstein condensate barely a year after we started, we have already achieved one of the most important goals of the project," says Francesca Ferlaino.

The Innsbruck experimental physicists hold the world record in attaining the first Bose-Einstein condensates of different chemical elements.

Cesium, strontium and erbium are the three chemical elements that the physicists in Innsbruck have condensated successfully in the last few years. An important breakthrough was made by Rudolf Grimm and his research group in 2002 when they achieved condensation of cesium, which led to numerous scientific findings in the years to follow. START awardee Florian Schreck, a member of Rudolf Grimm's research group, was the first to realize a condensate of strontium in 2009. And now Francesca Ferlaino accomplished this feat with the element erbium. Until now a total of 13 elements have been condensated worldwide.

Ten of these condensates were created by ten different international research groups. In 2001 Eric Cornell, Wolfgang Ketterle and Carl Wieman were awarded the Nobel Prize in physics for producing the first Bose-Einstein condensates. The new condensate of erbium, now produced for the first time in Innsbruck, is an excellent model system for miming fascinating effects arising from long-range interaction. This type of interaction is, for instance, at the basis of complex dynamics present in nature, such as occurring in geophysical vortices, in ferrofluids or in proteins while folding.


Story Source:

The above story is based on materials provided by University of Innsbruck. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, and F. Ferlaino. Bose-Einstein Condensation of Erbium. Phys. Rev. Lett., May 21, 2012 DOI: 10.1103/PhysRevLett.108.210401

Cite This Page:

University of Innsbruck. "First Bose-Einstein condensate of erbium: Quantum condensate of the thirteenth kind." ScienceDaily. ScienceDaily, 22 May 2012. <www.sciencedaily.com/releases/2012/05/120522084324.htm>.
University of Innsbruck. (2012, May 22). First Bose-Einstein condensate of erbium: Quantum condensate of the thirteenth kind. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2012/05/120522084324.htm
University of Innsbruck. "First Bose-Einstein condensate of erbium: Quantum condensate of the thirteenth kind." ScienceDaily. www.sciencedaily.com/releases/2012/05/120522084324.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins