Featured Research

from universities, journals, and other organizations

Molecular algebra in mammalian cells

Date:
June 4, 2012
Source:
ETH Zürich
Summary:
Researchers have reprogrammed mammalian cells in such a way as to perform logical calculations like a pocket calculator. The cells owe this ability to one of the most complex gene networks that has ever been incorporated into a higher cell.

Synthetic biologists have programmed a mammalian cell to calculate basic logical operations thanks to a highly complex artificial gene network.
Credit: J. Kuster / ETH Zurich

Researchers from ETH Zurich have reprogrammed mammalian cells in such a way as to perform logical calculations like a pocket calculator. The cells owe this ability to one of the most complex gene networks that has ever been incorporated into a higher cell.

Related Articles


A team of researchers from ETH Zurich headed by Martin Fussenegger, a professor of biotechnology and bioengineering at ETH Zurich's Department of Biosystems Science and Engineering (D-BSSE) in Basel, has constructed a network of different genes that can perform calculations and, based on these, initiate specific metabolic steps. In principle, the scientists have developed circuit elements from biological components that are known as logic gates in computer technology and electrical engineering. The basis for the calculations performed is Boolean logic, which works with AND or XOR gates, for instance.

Calculator with modular structure

The researchers succeeded in combining these different gates with each other and interconnecting them to produce two important combinational circuits from digital electronics -- the half-adder and the half-subtractor. A half-adder adds up two binary numbers -- in other words, noughts and ones; a half-substractor de-ducts them from each other.

To programme the cell calculator, the ETH-Zurich researchers used two input signals that control the gene network. For test purposes, the biologists used the antibiotic erythromycin and the apple molecule phloretin. In the case of an AND gate, for instance, both inputs -- namely phloretin and erythromycin -- need to be present for the cell to calculate a one in the output. As a result of this one, the gene network triggers the formation of a fluorescent protein, which makes the cell glow. If one of the two input signals is lacking, the cell will not light up.

The first ″true″ programmable cell calculator

"By combining several logic gates, we have achieved an unprecedented level of complexity in a synthetic gene network in mammalian cells," stresses Professor Fussenegger. Moreover, it is remarkable that the bio-computer can process two different input and output signals in parallel. This sets the bio-calculator apart from digital electronics, which works exclusively with electrons. "By nature, a cell can process many different metabolic products in parallel," adds Professor Fussenegger.

The biological calculator has only been able to master basic binary arithmetic operations thus far and is therefore not a patch on a powerful PC. "However, it is wonderful that a mammalian cell can calculate like that," says Professor Fussenegger.

Scientists have already realised various circuit elements in yeasts and bacteria. The novelty, however, is that the biotechnologists managed to incorporate an entire system into a single cell, and a mammalian one at that.

Future applications conceivable

For Professor Fussenegger, it is conceivable that implanted cell calculators could monitor a patient's metabolism in the distant future and step in if necessary. "Intelligent" cell implants could be used in diabetes patients, for instance, by developing a circuit that recognises disease-related metabolic products and controls the release of therapeutically effective substances, such as insulin. However, the researchers are still a far cry from such an application.


Story Source:

The above story is based on materials provided by ETH Zürich. The original article was written by Peter Rüegg. Note: Materials may be edited for content and length.


Journal Reference:

  1. Simon Ausländer, David Ausländer, Marius Müller, Markus Wieland, Martin Fussenegger. Programmable single-cell mammalian biocomputers. Nature, 2012; DOI: 10.1038/nature11149

Cite This Page:

ETH Zürich. "Molecular algebra in mammalian cells." ScienceDaily. ScienceDaily, 4 June 2012. <www.sciencedaily.com/releases/2012/06/120604092856.htm>.
ETH Zürich. (2012, June 4). Molecular algebra in mammalian cells. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2012/06/120604092856.htm
ETH Zürich. "Molecular algebra in mammalian cells." ScienceDaily. www.sciencedaily.com/releases/2012/06/120604092856.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) — Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) — A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins