Featured Research

from universities, journals, and other organizations

Molecular algebra in mammalian cells

Date:
June 4, 2012
Source:
ETH Zürich
Summary:
Researchers have reprogrammed mammalian cells in such a way as to perform logical calculations like a pocket calculator. The cells owe this ability to one of the most complex gene networks that has ever been incorporated into a higher cell.

Synthetic biologists have programmed a mammalian cell to calculate basic logical operations thanks to a highly complex artificial gene network.
Credit: J. Kuster / ETH Zurich

Researchers from ETH Zurich have reprogrammed mammalian cells in such a way as to perform logical calculations like a pocket calculator. The cells owe this ability to one of the most complex gene networks that has ever been incorporated into a higher cell.

A team of researchers from ETH Zurich headed by Martin Fussenegger, a professor of biotechnology and bioengineering at ETH Zurich's Department of Biosystems Science and Engineering (D-BSSE) in Basel, has constructed a network of different genes that can perform calculations and, based on these, initiate specific metabolic steps. In principle, the scientists have developed circuit elements from biological components that are known as logic gates in computer technology and electrical engineering. The basis for the calculations performed is Boolean logic, which works with AND or XOR gates, for instance.

Calculator with modular structure

The researchers succeeded in combining these different gates with each other and interconnecting them to produce two important combinational circuits from digital electronics -- the half-adder and the half-subtractor. A half-adder adds up two binary numbers -- in other words, noughts and ones; a half-substractor de-ducts them from each other.

To programme the cell calculator, the ETH-Zurich researchers used two input signals that control the gene network. For test purposes, the biologists used the antibiotic erythromycin and the apple molecule phloretin. In the case of an AND gate, for instance, both inputs -- namely phloretin and erythromycin -- need to be present for the cell to calculate a one in the output. As a result of this one, the gene network triggers the formation of a fluorescent protein, which makes the cell glow. If one of the two input signals is lacking, the cell will not light up.

The first ″true″ programmable cell calculator

"By combining several logic gates, we have achieved an unprecedented level of complexity in a synthetic gene network in mammalian cells," stresses Professor Fussenegger. Moreover, it is remarkable that the bio-computer can process two different input and output signals in parallel. This sets the bio-calculator apart from digital electronics, which works exclusively with electrons. "By nature, a cell can process many different metabolic products in parallel," adds Professor Fussenegger.

The biological calculator has only been able to master basic binary arithmetic operations thus far and is therefore not a patch on a powerful PC. "However, it is wonderful that a mammalian cell can calculate like that," says Professor Fussenegger.

Scientists have already realised various circuit elements in yeasts and bacteria. The novelty, however, is that the biotechnologists managed to incorporate an entire system into a single cell, and a mammalian one at that.

Future applications conceivable

For Professor Fussenegger, it is conceivable that implanted cell calculators could monitor a patient's metabolism in the distant future and step in if necessary. "Intelligent" cell implants could be used in diabetes patients, for instance, by developing a circuit that recognises disease-related metabolic products and controls the release of therapeutically effective substances, such as insulin. However, the researchers are still a far cry from such an application.


Story Source:

The above story is based on materials provided by ETH Zürich. The original article was written by Peter Rüegg. Note: Materials may be edited for content and length.


Journal Reference:

  1. Simon Ausländer, David Ausländer, Marius Müller, Markus Wieland, Martin Fussenegger. Programmable single-cell mammalian biocomputers. Nature, 2012; DOI: 10.1038/nature11149

Cite This Page:

ETH Zürich. "Molecular algebra in mammalian cells." ScienceDaily. ScienceDaily, 4 June 2012. <www.sciencedaily.com/releases/2012/06/120604092856.htm>.
ETH Zürich. (2012, June 4). Molecular algebra in mammalian cells. ScienceDaily. Retrieved April 25, 2014 from www.sciencedaily.com/releases/2012/06/120604092856.htm
ETH Zürich. "Molecular algebra in mammalian cells." ScienceDaily. www.sciencedaily.com/releases/2012/06/120604092856.htm (accessed April 25, 2014).

Share This



More Plants & Animals News

Friday, April 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Fungus Killing Bats, Spreading in US

Deadly Fungus Killing Bats, Spreading in US

AP (Apr. 24, 2014) — A disease that has killed more than six million cave-dwelling bats in the United States is on the move and wildlife biologists are worried. White Nose Syndrome, discovered in New York in 2006, has now spread to 25 states. (April 24) Video provided by AP
Powered by NewsLook.com
Blood From World's Oldest Woman Suggests Life Limit

Blood From World's Oldest Woman Suggests Life Limit

Newsy (Apr. 24, 2014) — Scientists say for the extremely elderly, their stem cells might reach a state of exhaustion. This could limit one's life span. Video provided by Newsy
Powered by NewsLook.com
Raw: Kangaroo Rescued from Swimming Pool

Raw: Kangaroo Rescued from Swimming Pool

AP (Apr. 24, 2014) — A kangaroo was saved from drowning in a backyard suburban swimming pool in Australia's Victoria state on Thursday. Australian broadcaster Channel 7 showed footage of the kangaroo struggling to get out of the pool. (April 24) Video provided by AP
Powered by NewsLook.com
Could Marijuana Use Lead To Serious Heart Problems?

Could Marijuana Use Lead To Serious Heart Problems?

Newsy (Apr. 24, 2014) — A new study says marijuana use could lead to serious heart-related complications. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins