Featured Research

from universities, journals, and other organizations

Brain cell activity imbalance may account for seizure susceptibility in angelman syndrome

Date:
June 6, 2012
Source:
University of North Carolina School of Medicine
Summary:
Scientists may have pinpointed an underlying cause of the seizures that affect 90 percent of people with Angelman syndrome (AS), a neurodevelopmental disorder.

This image shows inhibitory neurons (red) and cell bodies (blue) in the cerebral cortex of an Angelman syndrome model mouse.
Credit: Philpot Lab, UNC School of Medicine

New research by scientists at the University of North Carolina School of Medicine may have pinpointed an underlying cause of the seizures that affect 90 percent of people with Angelman syndrome (AS), a neurodevelopmental disorder.

Published online June 6, 2012 in the journal Neuron, researchers led by Benjamin D. Philpot, PhD, professor of cell and molecular physiology at UNC, describe how seizures in individuals with AS could be linked to an imbalance in the activity of specific types of brain cells.

“Our study indicates that a common abnormality that may apply to many neurodevelopmental disorders is an imbalance between neuronal excitation and inhibition,” Philpot said. This imbalance has been observed in several genetic disorders including Fragile X and Rett syndromes, both of these, like AS, can be associated with autism.

Angelman syndrome occurs in one in 15,000 live births. The syndrome often is misdiagnosed as cerebral palsy or autism. Its characteristics, along with seizures, include cognitive delay, severe intellectual disability, lack of speech (minimal or no use of words), sleep disturbance, hand flapping and motor and balance disorders.

The most common genetic defect of the syndrome is the lack of expression of the maternally inherited allele of gene UBE3A on chromosome 15.

This loss of gene function in AS animal models has been linked to decreased release of an excitatory neurotransmitter which increases the activity of other neurons. But that seems at odds with the high seizure activity observed in AS patients. The new study may clarify this issue.

In his lab in UNC’s Neuroscience Research Center, Philpot and graduate student Michael L. Wallace, the study’s first author, explored the neurocircuitry of an Angelman syndrome mouse model. These mice show behavioral features similar to humans with AS, including seizures.

The researchers used electrophysiological methods to record excitatory and inhibitory activity from individual neurons. These involved highly precise recording electrodes, microscopic tips attached to individual neurons. “In this way you can record from precise neuron types and tell which neuron you’re recording from and what its activity is,” explained Philpot.

“You can stimulate it to drive other neurons and also record the activity on other neurons onto it.”

The researchers found that neurotransmitters sent from inhibitory neurons and carrying chemical messages meant to stop excitatory neurons from increasing their activity were defective.

In addition, they found that AS model mice have a defect in their inhibitory neurons which decreases their ability to recover from high levels of activity. “One of the reasons why inhibition is so important is that it’s needed to ensure that brain activity is regulated,” Philpot said. “Inhibition plays an important role in timing of information transfer between neurons, and if the timing is messed up, as you might observe if you had a decrease in inhibition, then a lot of information is lost in that transfer.”

“We found a disproportionately large decrease in inhibition to excitation,” Wallace said. “We think that the circuit we investigated is in a hyperexcitable state and may be underlying some of the epileptic problems observed in the AS animal model. This improperly regulated brain activity might also underlie cognitive impairments in AS.”

Philpot says one of their goals is to understand exactly how these changes in the connections between neurons underlie seizures in AS. “A very long term goal is to try to get better treatments for these individuals because their epilepsy is very hard to treat.”

Along with Wallace and Philpot, other UNC co-authors are Alain C. Burette and Richard J. Weinberg from the department of cell and developmental biology.

Support for the research came from a National Institute of Neurological Disorders and Stroke, the Angelman Syndrome Foundation, the Simons Foundation, the National Eye Institute, and the National Institute of Mental Health.


Story Source:

The above story is based on materials provided by University of North Carolina School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Michael L. Wallace, Alain C. Burette, Richard J. Weinberg, Benjamin D. Philpot. Maternal Loss of Ube3a Produces an Excitatory/Inhibitory Imbalance through Neuron Type-Specific Synaptic Defects. Neuron, 7 June 2012 DOI: 10.1016/j.neuron.2012.03.036

Cite This Page:

University of North Carolina School of Medicine. "Brain cell activity imbalance may account for seizure susceptibility in angelman syndrome." ScienceDaily. ScienceDaily, 6 June 2012. <www.sciencedaily.com/releases/2012/06/120606155716.htm>.
University of North Carolina School of Medicine. (2012, June 6). Brain cell activity imbalance may account for seizure susceptibility in angelman syndrome. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2012/06/120606155716.htm
University of North Carolina School of Medicine. "Brain cell activity imbalance may account for seizure susceptibility in angelman syndrome." ScienceDaily. www.sciencedaily.com/releases/2012/06/120606155716.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins