Featured Research

from universities, journals, and other organizations

Bright X-ray flashes created in laser lab

Date:
June 7, 2012
Source:
Vienna University of Technology
Summary:
A new method of producing bright laser pulses at X-ray energies has just been developed. The radiation covers a broad energy spectrum and can therefore be used for a wide range of applications. Up until now, similar kinds of radiation could only be produced in particle accelerators (synchrotrons).

This is Audrius Pugzlys (Photonics Institute, TU Vienna) in the laser lab.
Credit: Vienna University of Technology

A breakthrough in laser science was achieved in Vienna: In the labs of the Photonics Institute at the Vienna University of Technology, a new method of producing bright laser pulses at x-ray energies was developed. The radiation covers a broad energy spectrum and can therefore be used for a wide range of applications, from materials science to medicine. Up until now, similar kinds of radiation could only be produced in particle accelerators (synchrotrons), but now a laser laboratory can also achieve this.

The new laser technology was presented in the current issue of the magazine Science.

Laser Light: Photons Oscillating in Sync

In a laser beam, all the photons oscillate in perfect unison. The wave crests are aligned -- this kind of radiation is called "coherent." The coherent light created in the labs of Professor Andrius Baltuska's team (Photonics Institute, TU Vienna) has very special properties: It is composed from photons of very different energies -- extending to x-ray radiation with very short wavelengths and high energy.

Infrared Light Makes Atoms Emit X-Rays

The energy for this kind of radiation is supplied by short infrared laser pulses. They are fired at noble gas, where they rip electrons out of the atoms. These electrons are then accelerated by the infrared light and return to their atoms, where they convert their kinetic energy into x-ray radiation. That way, long-wave infrared photons are converted into short-wave x-ray photons. When the atoms in the gas container all do this dance with their electrons in the right rhythm and all the x-ray-waves add up perfectly, a beam of laser-like x-rays is created. Research groups from several universities were involved in this experiment: Vienna University of Technology, University of Colorado, Columbia University and the University of Salamanca.

5000 Photons Combined to One Single Photon

The idea of combining several photons to a single photon with higher energy is not new: In 1961, two photons from a red ruby laser were combined to one blue photon. The new experiment however combines more than 5000 photons of low energy to one high-energy x-ray photon.

The infrared photons have a rather low energy -- but for the experiment, a large number of them is needed. That is why the infrared source has to be very strong. A unique infrared laser was used, specially developed at the Vienna University of Technology, with a peak power of 100 gigawatts. This corresponds to the power of several hundred hydroelectric power plants -- but only during the short laser pulse, which lasts for femtoseconds (10^-15 seconds). The team from the University of Colorado contributed know-now on the creation of x-rays in noble gas at high pressure. The theory groups from Cornell and Salamanca studied the phenomenon using numerical calculations.

Working with Invisible Radiation

"Together we discussed how to combine the technological know how of our research teams, and finally we chose the most challenging path," says Audrius Pugzlys (TU Vienna). The team decided to use infrared radiation with a very long wavelength of four micrometers. This kind of radiation is invisible to the human eye and it is hard to trace even with technological tools. This makes the experiments very challenging, but it allows for higher x-ray energies. The effort finally paid off: "Our coherent x-ray radiation opens the door to very precise spectroscopy, which can be used to research new materials, to advance electronics or to analyze biomolecules," says Audrius Pugzlys.

Laser Labs Instead of Particle Accelerators

This kind of radiation used to be available only in expensive particle accelerators (synchrotrons). The new table top x-ray light source, however, can be assembled in a small laser lab. "Synchrotrons still deliver more photons per second than our beam does, but for many applications, our light source will be very useful," says Audrius Pugzlys. The hard x-ray regime of photons with extremely high energy cannot yet be reached, but the energy of the photons in the x-ray beam is much higher than in any other light-powered tabletop device. Now the team is trying to reduce the time interval between the laser pulses. This should drastically increase the average intensity of the beam.


Story Source:

The above story is based on materials provided by Vienna University of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, H. C. Kapteyn. Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers. Science, 2012; 336 (6086): 1287 DOI: 10.1126/science.1218497

Cite This Page:

Vienna University of Technology. "Bright X-ray flashes created in laser lab." ScienceDaily. ScienceDaily, 7 June 2012. <www.sciencedaily.com/releases/2012/06/120607142349.htm>.
Vienna University of Technology. (2012, June 7). Bright X-ray flashes created in laser lab. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2012/06/120607142349.htm
Vienna University of Technology. "Bright X-ray flashes created in laser lab." ScienceDaily. www.sciencedaily.com/releases/2012/06/120607142349.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


Imaging the Nanoworld: Physicists Use Ultrafast Lasers to Create First Tabletop X-Ray Device

June 7, 2012 — Scientists have generated the first laser-like beams of X-rays from a tabletop device, paving the way for major advances in many fields including medicine, biology and nanotechnology ... read more

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins