Featured Research

from universities, journals, and other organizations

Regenerated cells may restore vision after corneal dysfunction

Date:
June 14, 2012
Source:
Elsevier Health Sciences
Summary:
Efforts to treat disorders of the corneal endothelium, a single cell layer on the inner surface of the cornea, with regenerative techniques have been less effective. Now, a group of scientists has developed a method that enhances the adhesion of injected corneal endothelial cells, allowing for successful corneal transplantation to repair pathological dysfunctions.

Injection of cultivated corneal endothelial cells with ROCK inhibitor Y-27632 enables regeneration of cornea in rabbit corneal endothelial dysfunction model.
Credit: N. Okumura et al.

Regenerative medicine, or the use of specially grown tissues and cells to treat injuries and diseases, has been successful in treating disorders of a number of organs, including heart, pancreas, and cartilage. However, efforts to treat disorders of the corneal endothelium, a single cell layer on the inner surface of the cornea, with regenerative techniques have been less effective. Now, a group of scientists has developed a method that enhances the adhesion of injected corneal endothelial cells (CECs), allowing for successful corneal transplantation to repair pathological dysfunctions.

Related Articles


Their results are published online June 14 in advance, in the July issue of The American Journal of Pathology.

"Corneal endothelial dysfunction is a major cause of severe visual impairment, since the cells maintain the transparency of the cornea," explains lead investigator Noriko Koizumi, MD, PhD, of the Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan. "Injected cultured CECs can be washed off by aqueous humor flow, resulting in poor adhesion of the cells injected onto the corneal tissue. Previous studies demonstrated that Rho-associated kinase (ROCK) signaling interferes with adhesion. We found that transplanting cultivated CECs in combination with a low-molecular weight compound that inhibits ROCK (ROCK inhibitor Y-27632), successfully achieved the recovery of corneal transparency."

Using rabbit cells, researchers cultivated CECs in the lab and injected them into the anterior chamber of rabbit eyes with damaged corneal endothelia. Based on the recovery of the corneal endothelial function, they found that when the cultivated cells were injected along with Y-27632, the rabbit corneas regained complete transparency 48 hours after injection. In contrast, rabbit CECs injected without Y-27632 resulted in hazy and severely swollen corneas. No complications related to cell injection therapy were observed and reconstructed corneal endothelium with Y-27632 exhibited normal hexagonal cell shape.

Since rabbit CECs are highly prolific in vivo, the scientists performed another round of experiments with monkey CECs, which are more similar to those in humans. The transplantation of CECs in these primates also achieved the recovery of long-term corneal transparency with a monolayer of hexagonal cells, suggesting that cell adhesion modified by ROCK inhibitor may be an effective treatment for human corneal endothelial disorders.

Although surgical techniques to replace the injured corneal endothelium have been developed, these procedures are technically difficult and challenging due to a shortage of donor corneas. "The novel strategy of using a cell-based therapy combined with a ROCK inhibitor may ultimately provide clinicians with a new therapeutic modality in regenerative medicine, not only for treatment of corneal endothelial dysfunctions, but also for a variety of pathological diseases," Dr. Koizumi concludes.


Story Source:

The above story is based on materials provided by Elsevier Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. N. Okumura, N. Koizumi, M. Ueno, Y. Sakamoto, H. Takahashi, H. Tsuchiya, J. Hamuro, and S. Kinoshita. A ROCK Inhibitor Converts Corneal Endothelial Cells into a Phenotype Capable of Regenerating In Vivo Endothelial Tissue. The American Journal of Pathology, 2012 DOI: 10.1016/j.ajpath.2012.03.033

Cite This Page:

Elsevier Health Sciences. "Regenerated cells may restore vision after corneal dysfunction." ScienceDaily. ScienceDaily, 14 June 2012. <www.sciencedaily.com/releases/2012/06/120614082621.htm>.
Elsevier Health Sciences. (2012, June 14). Regenerated cells may restore vision after corneal dysfunction. ScienceDaily. Retrieved March 6, 2015 from www.sciencedaily.com/releases/2012/06/120614082621.htm
Elsevier Health Sciences. "Regenerated cells may restore vision after corneal dysfunction." ScienceDaily. www.sciencedaily.com/releases/2012/06/120614082621.htm (accessed March 6, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, March 6, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bupa Eyes India Healthcare Opportunities

Bupa Eyes India Healthcare Opportunities

Reuters - Business Video Online (Mar. 5, 2015) Bupa is hoping to expand in India&apos;s fast-growing health insurance market, once a rule change on foreign investment is implemented. The British private healthcare group&apos;s CEO tells Grace Pascoe why it&apos;s so keen on the new opportunity. Video provided by Reuters
Powered by NewsLook.com
Liberia Releases Last Ebola Patient, But Threat Remains

Liberia Releases Last Ebola Patient, But Threat Remains

Newsy (Mar. 5, 2015) Liberia&apos;s last Ebola patient has been released, and the country hasn&apos;t recorded a new case in a week. However, fears of another outbreak still exist. Video provided by Newsy
Powered by NewsLook.com
Doctor in Your Pocket Is Getting Smarter

Doctor in Your Pocket Is Getting Smarter

Reuters - Business Video Online (Mar. 5, 2015) Mobile apps are turning smartphones into a personal doctors, with users able to measure heart rate, blood pressure and even blood sugar. But will it change our behaviour? Ivor Bennett reports from the Mobile World Congress in Barcelona. Video provided by Reuters
Powered by NewsLook.com
AbbVie Inks $21B Deal To Buy Cancer Drugmaker Pharmacyclics

AbbVie Inks $21B Deal To Buy Cancer Drugmaker Pharmacyclics

Newsy (Mar. 5, 2015) AbbVie announced Wednesday it will buy cancer drugmaker Pharmacyclics in a $21 billion deal. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins