Featured Research

from universities, journals, and other organizations

Relocating LEDs from silicon to copper enhances efficiency

Date:
June 14, 2012
Source:
American Institute of Physics
Summary:
Chinese researchers have succeeded in transferring gallium nitride (GaN) light-emitting diodes (LEDs) grown on a layer of silicon to a layer of copper. In comparison with LEDs on silicon substrates, the light output of LEDs on copper was enhanced by 122 percent.

Chinese researchers have succeeded in transferring gallium nitride (GaN) light-emitting diodes (LEDs) grown on a layer of silicon to a layer of copper. The new copper substrate enabled the GaN crystals to release some of the internal stresses generated when they originally formed.

This relaxation helped minimize the so-called "quantum confined stark effect," a vexing problem for LEDs that reduces their efficiency. In comparison with LEDs on silicon substrates, the light output of LEDs on copper was enhanced by 122 percent.

The relocation of the LEDs produced no obvious deterioration in the crystals' light-emitting region, known as multiple quantum wells. The researchers attributed the improvements in efficiency to the removal of the absorptive substrate; the insertion of a metal reflector between the LEDs' structure and the copper submount; the elimination of electrode shading, which also reduces efficiency; and the rough surface of the exposed buffer layer, which improves crystal orientation on the substrate.

The results are reported in a paper accepted for publication in the American Institute of Physics' journal Applied Physics Letters.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tufu Chen, Yunqian Wang, Peng Xiang, Ruihong Luo, Minggang Liu, Weimin Yang, Yuan Ren, Zhiyuan He, Yibin Yang, Weijie Chen, Xiaorong Zhang, Zhisheng Wu, Yang Liu, Baijun Zhang. Crack-free InGaN multiple quantum wells light-emitting diodes structures transferred from Si (111) substrate onto electroplating copper submount with embedded electrodes. Applied Physics Letters, 2012; 100 (24): 241112 DOI: 10.1063/1.4729414

Cite This Page:

American Institute of Physics. "Relocating LEDs from silicon to copper enhances efficiency." ScienceDaily. ScienceDaily, 14 June 2012. <www.sciencedaily.com/releases/2012/06/120614082633.htm>.
American Institute of Physics. (2012, June 14). Relocating LEDs from silicon to copper enhances efficiency. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2012/06/120614082633.htm
American Institute of Physics. "Relocating LEDs from silicon to copper enhances efficiency." ScienceDaily. www.sciencedaily.com/releases/2012/06/120614082633.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins