Featured Research

from universities, journals, and other organizations

Optical displays from water and air

Date:
June 14, 2012
Source:
Aalto University
Summary:
For many years, scientists have been pursuing ways to mimic the perplexing capability of the lotus leaf to repel water. Lotus leaves hate water so much that droplets effortlessly roll off the surface, keeping it clean from dirt. Now an international team of researchers have come up with an entirely new concept of writing and displaying information on surfaces using simply water. They exploit the unique way a trapped layer of air behaves on a lotus-inspired dual-structured water-repelling surface immersed under water.

Water is applied to a surface but the surface does not get wet.
Credit: Image courtesy of Aalto University

For many years, scientists have been pursuing ways to mimic the perplexing capability of the lotus leaf to repel water. Lotus leaves hate water so much that droplets effortlessly roll off the surface, keeping it clean from dirt. Now an international team of researchers led by Aalto University have come up with an entirely new concept of writing and displaying information on surfaces using simply water. They exploit the unique way a trapped layer of air behaves on a lotus-inspired dual-structured water-repelling surface immersed under water.

Related Articles


To achieve the extreme water-repellency of the lotus leaf, a surface needs to be superhydrophobic: it must have microscopic surface structures that prevent water from wetting the surface completely, leaving a thin layer of air between water and the surface. When such a surface is immersed in water, a trapped air layer covers the entire surface.

The researchers lead by Dr. Robin Ras at Aalto University in Finland, University of Cambridge and Nokia Research Center Cambridge fabricated a surface with structures in two size scales: microposts that have a size of ten micrometers and tiny nanofilaments that are grown on the posts. On such a two-level surface the air layer can exist in two different shapes (wetting states) that correspond to the two size scales. The researchers found that one can easily switch between the two states locally using a nozzle to create over- or underpressure in the water, in order to change the air layer to either state.

"The minimal energy needed to switch between the states means the system is bistable, which is the essential property of memory devices, for example," Academy Research Fellow Dr. Robin Ras points out. However, there is a feature that makes it all the more interesting: there is a striking optical contrast between the states due to a change in the roughness of the water-air interface. "Combined with the optical effect, the surface is also a bistable reflective display."

The switching only involves a change in the shape of the air layer − nothing happens to the solid surface itself. This is demonstrated by writing shapes on the surface underwater (making use of the contrast between the states) and taking the sample out of water: the surface emerges completely dry, and no traces of the writing remain.

The method for manipulating the air layer with the nozzle was developed by Tuukka Verho, graduate student in Aalto University. He was able to show that the reversible switching can be done with precision in a pixel-by-pixel fashion.

"This result represents the first step in making non-wettable surfaces a platform for storing or even processing information," says Academy professor Olli Ikkala. Until now, lotus-inspired surfaces have been mainly developed for applications like self-cleaning, anti-icing or flow drag reduction. This research is a landmark example how the Nature teaches materials scientists towards functional materials.

An article entitled "Reversible switching between superhydrophobic states on a hierarchically structured surface" is published in PNAS, Proceedings of the National Academy of Sciences of the USA, and provides more in depth information about this project.

Watch a video: http://www.youtube.com/watch?v=AEWPIjLbrSE


Story Source:

The above story is based on materials provided by Aalto University. Note: Materials may be edited for content and length.


Journal Reference:

  1. T. Verho, J. T. Korhonen, L. Sainiemi, V. Jokinen, C. Bower, K. Franze, S. Franssila, P. Andrew, O. Ikkala, R. H. A. Ras. Reversible switching between superhydrophobic states on a hierarchically structured surface. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1204328109

Cite This Page:

Aalto University. "Optical displays from water and air." ScienceDaily. ScienceDaily, 14 June 2012. <www.sciencedaily.com/releases/2012/06/120614130821.htm>.
Aalto University. (2012, June 14). Optical displays from water and air. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2012/06/120614130821.htm
Aalto University. "Optical displays from water and air." ScienceDaily. www.sciencedaily.com/releases/2012/06/120614130821.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins