Featured Research

from universities, journals, and other organizations

Graphene Research: Trapping light in a carbon net

Date:
June 21, 2012
Source:
Ludwig-Maximilians-Universität München
Summary:
Graphene, an ordered monolayer of carbon, is the thinnest substance known, and yet has extraordinary mechanical strength. A new study shows that its two-dimensional network of atoms can even trap light.

Graphene, an ordered monolayer of carbon, is the thinnest substance known, and yet has extraordinary mechanical strength. A new study shows that its two-dimensional network of atoms can even trap light.

Related Articles


Thin, thinner, graphene. Graphene, a monolayer of carbon in which the atoms are arranged in a two-dimensional honeycomb network, is the thinnest net in the world, is highly stable. Andre Geim and Konstantin Novoselov received the Nobel Prize for Physics in 2010 for their discovery of the electrical conductivity of graphene. Indeed, graphene could in future replace silicon as the basis for extremely small and extremely fast transistors, and is therefore the subject of intense research.

The high mobility of electrons in graphene arises from the fact that they are confined to the hexagonal lattice. An international team led by the American physicist Dimitri Basov has now shown that photons too can be trapped within the lattice and move freely along it. "It is even possible to control the light waves within the lattice," says physicist Dr. Fritz Keilmann, who is affiliated with LMU Munich, the Center for Nanoscience (CeNS) and the Max Planck Institute for Quantum Optics (MPQ), and contributed significantly to the new work.

Computers with optical switches

Such control can be exerted using electric fields and currents. Hence, in future, the behavior of light in graphene could be tuned electrically, and the converse may also be feasible. Since the light is confined to nanocables with dimensions of a millionth of a millimeter, switching times could be reduced to less than a picosecond (0.000000000001 sec). "It might even be possible to develop computers whose graphene transistors could be switched both optically and electrically," says Keilmann.

Theoretical calculations had previously suggested that photons, specifically long-wavelength infrared photons, could indeed be propagated along the graphene lattice at greatly reduced velocities. The slowing effect was attributed to the formation of plasmons, a type of hybrid particle produced by coupling of the photons to electronic excitations in graphene. It has not been possible to study the predicted plasmons experimentally, because the momentum of the infrared photons was far too low to excite them.

Bringing photons to the point

This problem has now been solved with the aid of a tiny metal pin with a nanometer-sized tip. Acting like a lightning rod, it concentrates incident light into a very small volume. This raises the momentum of infrared photons by up to 60-fold, giving them the extra momentum they need to launch plasmonic waves along the graphene layer. For this purpose, the researchers made use of a commercial infrared scanning near-field microscope, whose finely honed scanning tip is normally used to map the chemical composition of a material under test

In this case only the edge zone of a graphene sample was imaged. Reflection of the plasmons at this edge produces an interference pattern, which encodes information that can be used to confirm formation of the plasmons. It also allows one to deduce many of their properties, such as the magnitude of the reflection at the graphene edge and the change in the velocity by external electric bias, which is of particular interest for future applications. "The long-sought ability to control light signals by electrical means has thus been realized," says Keilmann.

An independent study carried out by a Spanish group, based on the use of a graphene sheet formed by deposition from the gas phase rather than the exfoliated film used in the LMU work, comes to a similar conclusion. The two papers have now appeared back-to-back in the top-tier journal Nature, underlining the significance of these findings for the field of nanoelectronics.


Story Source:

The above story is based on materials provided by Ludwig-Maximilians-Universität München. Note: Materials may be edited for content and length.


Journal Reference:

  1. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, D. N. Basov. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 2012; DOI: 10.1038/nature11253

Cite This Page:

Ludwig-Maximilians-Universität München. "Graphene Research: Trapping light in a carbon net." ScienceDaily. ScienceDaily, 21 June 2012. <www.sciencedaily.com/releases/2012/06/120621113335.htm>.
Ludwig-Maximilians-Universität München. (2012, June 21). Graphene Research: Trapping light in a carbon net. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/2012/06/120621113335.htm
Ludwig-Maximilians-Universität München. "Graphene Research: Trapping light in a carbon net." ScienceDaily. www.sciencedaily.com/releases/2012/06/120621113335.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) — Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com
Los Angeles Police To Receive 7,000 Body Cameras

Los Angeles Police To Receive 7,000 Body Cameras

Newsy (Dec. 17, 2014) — Los Angeles Mayor Eric Garcetti announced the cameras will be distributed starting Jan. 1. Video provided by Newsy
Powered by NewsLook.com
Researchers Bring Player Pianos Back to Life

Researchers Bring Player Pianos Back to Life

AP (Dec. 17, 2014) — Stanford University wants to unlock the secrets of the player piano. Researchers are restoring and studying self-playing pianos and the music rolls that recorded major composers performing their own work. (Dec. 17) Video provided by AP
Powered by NewsLook.com
France's Sauternes Wine Threatened by New Train Line

France's Sauternes Wine Threatened by New Train Line

AFP (Dec. 16, 2014) — Winemakers in southwestern France's Bordeaux are concerned about a proposed high speed train line that could affect the microclimate required for the region's sweet wine. Duration: 01:06 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins