Featured Research

from universities, journals, and other organizations

Faster, cheaper gas and liquid separation using custom designed and built mesoscopic structures

Date:
June 24, 2012
Source:
Institute for Integrated Cell-Material Sciences, Kyoto University
Summary:
In what may prove to be a significant boon for industry, separating mixtures of liquids or gasses has just become considerably easier. Using a new process they describe as "reverse fossilization," scientists have succeeded in creating custom designed porous substances capable of low cost, high efficiency separation.

A composite image showing (left) an alumina-based honeycomb lattice with approximately one micron diameter cells, from which (right) an equivalent porous coordination polymer (PCP) architecture is derived using "reverse fossilization."
Credit: Kyoto University iCeMS

In what may prove to be a significant boon for industry, separating mixtures of liquids or gasses has just become considerably easier.

Using a new process they describe as "reverse fossilization," scientists at Kyoto University's WPI Institute for Integrated Cell-Material Sciences (iCeMS) have succeeded in creating custom designed porous substances capable of low cost, high efficiency separation.

The process takes place in the mesoscopic realm, between the nano- and the macroscopic, beginning with the creation of a shaped mineral template, in this case using alumina, or aluminum oxide. This is then transformed into an equivalently shaped lattice consisting entirely of porous coordination polymer (PCP) crystals, which are themselves hybrid assemblies of organic and mineral elements.

"After creating the alumina lattice," explains team leader Assoc. Prof. Shuhei Furukawa, "we transformed it, molecule for molecule, from a metal structure into a largely non-metallic one. Hence the term 'reverse fossilization,' taking something inorganic and making it organic, all while preserving its shape and form."

After succeeding in creating both 2-dimensional and 3-dimensional test architectures using this technique, the researchers proceeded to replicate an alumina aerogel with a highly open, sponge-like macro-structure, in order to test its utility in separating water and ethanol.

"Water/ethanol separation has not been commonly possible using existing porous materials," elaborates Dr. Julien Reboul. "The PCP-based structures we created, however, combine the intrinsic nano-level adsorptive properties of the PCPs themselves with the meso- and macroscopic properties of the template aerogels, greatly increasing separation efficiency and capacity."

Lab head and iCeMS Deputy Director Prof. Susumu Kitagawa sees the team's achievement as a significant advance. "To date, PCPs have been shown on their own to possess highly useful properties including storage, catalysis, and sensing, but the very utility of the size of their nanoscale pores has limited their applicability to high throughput industrial processes. Using reverse fossilization to create architectures including larger, mesoscale pores now allows us to begin considering the design of such applications."


Story Source:

The above story is based on materials provided by Institute for Integrated Cell-Material Sciences, Kyoto University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Julien Reboul, Shuhei Furukawa, Nao Horike, Manuel Tsotsalas, Kenji Hirai, Hiromitsu Uehara, Mio Kondo, Nicolas Louvain, Osami Sakata, and Susumu Kitagawa. Mesoscopic architectures of porous coordination polymers fabricated by pseudomorphic replication. Nature Materials, June 24, 2012 DOI: 10.1038/nmat3359

Cite This Page:

Institute for Integrated Cell-Material Sciences, Kyoto University. "Faster, cheaper gas and liquid separation using custom designed and built mesoscopic structures." ScienceDaily. ScienceDaily, 24 June 2012. <www.sciencedaily.com/releases/2012/06/120624135011.htm>.
Institute for Integrated Cell-Material Sciences, Kyoto University. (2012, June 24). Faster, cheaper gas and liquid separation using custom designed and built mesoscopic structures. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2012/06/120624135011.htm
Institute for Integrated Cell-Material Sciences, Kyoto University. "Faster, cheaper gas and liquid separation using custom designed and built mesoscopic structures." ScienceDaily. www.sciencedaily.com/releases/2012/06/120624135011.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Car Market on the Rebound?

Europe's Car Market on the Rebound?

Reuters - Business Video Online (July 23, 2014) Daimler kicks off a round of second-quarter earnings results from Europe's top carmakers with a healthy set of numbers - prompting hopes that stronger sales in Europe will counter weakness in emerging markets. Hayley Platt reports. Video provided by Reuters
Powered by NewsLook.com
9/11 Commission Members Warn of Terror "fatigue" Among American Public

9/11 Commission Members Warn of Terror "fatigue" Among American Public

Reuters - US Online Video (July 22, 2014) Ten years after releasing its initial report, members of the 9/11 Commission warn of the "waning sense of urgency" in combating terrorists attacks. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins