Featured Research

from universities, journals, and other organizations

Transgenic technique 'eliminates' a specific neural circuit in brain of primates

Date:
June 26, 2012
Source:
National Institute for Physiological Sciences
Summary:
Biologists have developed a gene transfer technique that can "eliminate" a specific neural circuit in non-human primates for the first time.

In the brains of humans and non-human primates, over 100 billion nerve cells build up complicated neural circuits and produce higher brain functions. When an attempt is made to perform gene therapy for neurological diseases like Parkinson's disease, it is necessary to specify a responsible neural circuit out of many complicated circuits.Until now, however, it was difficult to introduce a target gene into this particular circuit selectively.

The collaborative research group consisting of Professor Masahiko Takada from Primate Research Institute, Kyoto University, Professor Atsushi Nambu from National Institute for Physiological Sciences, National Institutes of Natural Sciences, and Professor Kazuto KOBAYASHI from Fukushima Medical University School of Medicine have now developed a gene transfer technique that can "eliminate"a specific neural circuit in non-human primates for the first time.

They applied this technique to the basal ganglia, the brain region that is affected in movement disorders such as Parkinson's disease, and successfully eliminated a particular circuit selectively to elucidate its functional role. This technique can be applied to gene therapy for various neurological diseases in humans. This research achievement was supported by the Strategic Research Program of Brain Sciences by MEXT of Japan.

The research group developed a special viral vector, NeuRet-IL-2R alpha-GFP viral vector, expressing human interleukin type 2 alpha receptor, which the cell death inducer immunotoxin binds. Nerve cells transfected with this viral vector cause cell death by immunotoxin. First, the research group injected the viral vector into the subthalamic nucleus that is a component of the basal ganglia. Then, they injected immunotoxin into the motor cortex, an area of the cerebral cortex that controls movement, and succeed in selective elimination of the "hyperdirect pathway" that is one of the major circuits connecting the motor cortex to the basal ganglia. As a result, they have discovered that neuronal excitation observed at the early stage occurs through this hyperdirect pathway when motor information derived from the cortex enters the basal ganglia.

Professors Takada and Nambu expect that this gene transfer technique enables us to elucidate higher brain functions in primates and to develop primate models of various psychiatric/neurological disorders and their potential treatments including gene therapy. They think that this should provide novel advances in the field of neuroscience research that originate from Japan.

This research was supported by the Strategic Research Program of Brain Sciences by MEXT of Japan.


Story Source:

The above story is based on materials provided by National Institute for Physiological Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ken-ichi Inoue, Daisuke Koketsu, Shigeki Kato, Kazuto Kobayashi, Atsushi Nambu, Masahiko Takada Atsushi Nambu. Immunotoxin-Mediated Tract Targeting in the Primate Brain: Selective Elimination of the Cortico-Subthalamic “Hyperdirect” Pathway. PLoS ONE, 25 Jun 2012 DOI: 10.1371/journal.pone.0039149

Cite This Page:

National Institute for Physiological Sciences. "Transgenic technique 'eliminates' a specific neural circuit in brain of primates." ScienceDaily. ScienceDaily, 26 June 2012. <www.sciencedaily.com/releases/2012/06/120626092716.htm>.
National Institute for Physiological Sciences. (2012, June 26). Transgenic technique 'eliminates' a specific neural circuit in brain of primates. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2012/06/120626092716.htm
National Institute for Physiological Sciences. "Transgenic technique 'eliminates' a specific neural circuit in brain of primates." ScienceDaily. www.sciencedaily.com/releases/2012/06/120626092716.htm (accessed April 20, 2014).

Share This



More Mind & Brain News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Study On Artists' Brain Shows They're 'Structurally Unique'

Study On Artists' Brain Shows They're 'Structurally Unique'

Newsy (Apr. 17, 2014) The brains of artists aren't really left-brain or right-brain, but rather have extra neural matter in visual and motor control areas. Video provided by Newsy
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Are School Dress Codes Too Strict?

Are School Dress Codes Too Strict?

AP (Apr. 16, 2014) Pushing the limits on style and self-expression is a rite of passage for teens and even younger kids. How far should schools go with their dress codes? The courts have sided with schools in an era when school safety is paramount. (April 16) Video provided by AP
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins