Featured Research

from universities, journals, and other organizations

How clouds are formed: Rate of condensation much slower than thought

Date:
July 2, 2012
Source:
University of Bristol
Summary:
Researchers have shown that the rate of condensation of water on organic aerosol particles in the atmosphere can be very slow, taking many hours for a particle to change in size. This could have significant consequences for understanding how clouds are formed, affecting climate.

Researchers at the University of Bristol with collaborators from ETH-Zurich have shown that the rate of condensation of water on organic aerosol particles in the atmosphere can be very slow, taking many hours for a particle to change in size. This could have significant consequences for understanding how clouds are formed, affecting climate.
Credit: Anna Omelchenko / Fotolia

Researchers at the University of Bristol with collaborators from ETH-Zurich have shown that the rate of condensation of water on organic aerosol particles in the atmosphere can be very slow, taking many hours for a particle to change in size. This could have significant consequences for understanding how clouds are formed, affecting climate.

The influence of aerosols (small particles less than 1 micrometre in diameter) and clouds (liquid droplets 1 -- 1000 micrometres diameter) represents one of the largest uncertainties in our understanding of trends in past global climate and predicting future climate change, as recognised by the 2007 report of the Intergovernmental Panel on Climate Change.

One of the most significant 'known unknowns' is how quickly water can condense on the small aerosol particles to grow and become cloud droplets, influencing the albedo (reflectivity) of clouds and cloud lifetime (precipitation).

In a study published July 2 in Proceedings of the National Academy of Sciences, Professor Jonathan Reid of the University of Bristol and colleagues show that the rate of cloud droplet growth can be strongly dependent on the composition of the aerosol.

For aerosol particles that have high viscosity (equivalent to saying they behave like treacle or even bitumen), water evaporation and condensation can be very slow, taking many hours.

For particles that are much less viscous (more like olive oil or even water), evaporation and condensation can be very fast: less than 1 second.

Professor Reid said: "Although not providing all the answers, this work helps us better understand the 'known unknowns'. Most importantly, it demonstrates that better understanding the rate at which water condenses on particles in the atmosphere is crucial for understanding clouds."

The research was funded by the Engineering and Physical Sciences Research Council (EPSRC), UK


Story Source:

The above story is based on materials provided by University of Bristol. Note: Materials may be edited for content and length.


Cite This Page:

University of Bristol. "How clouds are formed: Rate of condensation much slower than thought." ScienceDaily. ScienceDaily, 2 July 2012. <www.sciencedaily.com/releases/2012/07/120702192504.htm>.
University of Bristol. (2012, July 2). How clouds are formed: Rate of condensation much slower than thought. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2012/07/120702192504.htm
University of Bristol. "How clouds are formed: Rate of condensation much slower than thought." ScienceDaily. www.sciencedaily.com/releases/2012/07/120702192504.htm (accessed August 30, 2014).

Share This




More Earth & Climate News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Volcano Erupts on Papua New Guinea

Raw: Volcano Erupts on Papua New Guinea

AP (Aug. 29, 2014) Several communities were evacuated and some international flights were diverted on Friday after one of the most active volcanos in the region erupts. (Aug. 29) Video provided by AP
Powered by NewsLook.com
Raw: Small Volcanic Eruption in Iceland

Raw: Small Volcanic Eruption in Iceland

AP (Aug. 29, 2014) Icelandic authorities briefly raised the aviation warning code to red on Friday during a small eruption at the Holuhraun lava field in the Bardabunga volcano system. (Aug. 29) Video provided by AP
Powered by NewsLook.com
As Drought Continues LA "water Police" Fight Waste

As Drought Continues LA "water Police" Fight Waste

AFP (Aug. 29, 2014) In the midst of a historic drought, Los Angeles is increasing efforts to go after people who waste water. Five water conservation "cops" drive around the city every day educating homeowners about the drought. Duration: 02:17 Video provided by AFP
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins