New! Sign up for our free email newsletter.
Science News
from research organizations

A deeper look into the pathogen responsible for crown gall disease in plants

Date:
July 11, 2012
Source:
American Society for Biochemistry and Molecular Biology
Summary:
Scientists have revealed new insights into the molecular properties of the rod-shaped soil bacterium Agrobacterium tumefaciens, the pathogen responsible for crown gall disease, a tumor-forming infection in plants, such as tomatoes, walnuts, grapes and beets.
Share:
FULL STORY

Next week's Journal of Biological Chemistry "Paper of the Week" by Wai Mun Huang and colleagues at the University of Utah Health Sciences Center and the University of Minnesota reveals new insights into the molecular properties of the rod-shaped soil bacterium Agrobacterium tumefaciens, the pathogen responsible for crown gall disease, a tumor-forming infection in plants, such as tomatoes, walnuts, grapes and beets.

The bacterium is parasitic: It infects its plant host by entering through an open wound, inserts a small segment of its genetic code into the plant's genome, devours energy made by the plant, and forms knobby brown lesions on the plant stem.

Huang's group focused on the pathogen's genetic material. Most bacteria have circular chromosomes. But A. tumefaciens C58, the strain studied by Huang's group, contains one circular chromosome and one linear chromosome (along with two circular plasmids). Huang's research illuminates how this bacterium maintains its linear chromosome.

Huang's team ascertained the DNA sequence for the telomeres, or the protective end caps, of the linear chromosome in A. tumefaciens C58 and confirmed that an enzyme, TelA, actually forms them by making hairpin loops. These end caps are important for maintaining the stability of linear chromosomes. Interestingly, TelA also binds the telomeres. This activity is unique among bacterial enzymes of this kind and may protect the telomeres (which degrade over time and thus lose their ability to preserve DNA), as telomere binding proteins do in eukaryotes.

"Hairpin-ended linear chromosomes and plasmids are found in a number of branches of bacteria and viruses," Huang says. "They are simple and elegant to form and to maintain." But what remains to be understood is why this linear configuration is not more common or even the preferred configuration for bacteria, Huang emphasizes.


Story Source:

Materials provided by American Society for Biochemistry and Molecular Biology. Note: Content may be edited for style and length.


Journal Reference:

  1. W. M. Huang, J. DaGloria, H. Fox, Q. Ruan, J. Tillou, K. Shi, H. Aihara, J. Aron, S. Casjens. Linear chromosome generating system of Agrobacterium tumefaciens C58: Protelomerase generates and protects hairpin ends. Journal of Biological Chemistry, 2012; DOI: 10.1074/jbc.M112.369488

Cite This Page:

American Society for Biochemistry and Molecular Biology. "A deeper look into the pathogen responsible for crown gall disease in plants." ScienceDaily. ScienceDaily, 11 July 2012. <www.sciencedaily.com/releases/2012/07/120711101036.htm>.
American Society for Biochemistry and Molecular Biology. (2012, July 11). A deeper look into the pathogen responsible for crown gall disease in plants. ScienceDaily. Retrieved April 26, 2024 from www.sciencedaily.com/releases/2012/07/120711101036.htm
American Society for Biochemistry and Molecular Biology. "A deeper look into the pathogen responsible for crown gall disease in plants." ScienceDaily. www.sciencedaily.com/releases/2012/07/120711101036.htm (accessed April 26, 2024).

Explore More

from ScienceDaily

RELATED STORIES