Featured Research

from universities, journals, and other organizations

'Sifting' liquid at the molecular level

Date:
July 17, 2012
Source:
Drexel University
Summary:
Engineers continue to drive research into the use of carbon nanotubes, straw-like structures that are more than 1,000 times thinner than a single human hair. Their most recent development uses the tiny tubes to separate liquids within a solution.

Drexel University engineers continue to drive research into the use of carbon nanotubes, straw-like structures that are more than 1,000 times thinner than a single human hair. Their most recent development uses the tiny tubes to separate liquids within a solution.

The researchers have shown that individual carbon nanotubes can act as a separation channel that would force two differing molecules to separate as easily as oil and water. For example, the molecules that comprise two chemically distinct liquids will interact differently with the walls of the nanotube as the liquids flow through it. This will cause one of the liquids to drain through the nanoscale straw faster than the other, thus forcing a separation between the two liquids.

This technology could prove useful in a number of applications, including forensic studies with very small sample sizes and studying molecules extracted from individual cells. Forensic experts would be able to analyze trace evidence, even down to a single cell or invisible stains.

"We believe that this research will lead to development of tools for analysis on single living cells and push the limits of analytical chemistry to even smaller scales and to single organelle columns," said Dr. Yury Gogotsi, director of the A.J. Drexel Nanotechnology Institute.

Gogotsi and Dr. Gary Friedman, director of the Drexel Plasma Medicine Lab and a professor of electrical and computer engineering, were the lead researchers on a study about applications of nanotubes for cellular chromatography that was recently published in Nature Publishing Group's Scientific Reports. The research was funded by a grant from W.M. Keck Foundation and the National Science Foundation's National Interdisciplinary Research Teams program.

The carbon nanotubes used in this study measure as small as 70 nanometers in outer diameter and are currently the smallest chromatography columns ever made. The carbon nanotube columns are mechanically robust and are able to withstand repeated bending and compression. These characteristics are vital for applications at the cellular level, as the tiny tubes' durability allows them to penetrate cell membranes.

Continued nanotube research by Drexel engineers will examine the development of electrochemical and optical tools.


Story Source:

The above story is based on materials provided by Drexel University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Riju Singhal, Vadym N. Mochalin, Maria R. Lukatskaya, Gary Friedman, Yury Gogotsi. Separation and liquid chromatography using a single carbon nanotube. Scientific Reports, 2012; 2 DOI: 10.1038/srep00510

Cite This Page:

Drexel University. "'Sifting' liquid at the molecular level." ScienceDaily. ScienceDaily, 17 July 2012. <www.sciencedaily.com/releases/2012/07/120717131349.htm>.
Drexel University. (2012, July 17). 'Sifting' liquid at the molecular level. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2012/07/120717131349.htm
Drexel University. "'Sifting' liquid at the molecular level." ScienceDaily. www.sciencedaily.com/releases/2012/07/120717131349.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins